邯郸一体化农村污水处理EDI装置 邯郸一体化农村污水处理EDI装置
对浓水而言,在工作树脂区电导率与RO纯水相当,相对较低,而在抛光区,其电导则成倍地增长;对纯水而言,在工作树脂区电导率与RO纯水相当,由于树脂的增导电效应,电导率较高;而在抛光区,其电导则成倍地降低。因此,在工作树脂区,大部分电压施加与浓水,纯水室的电压梯度不高,而在抛光区,部分电压施加于淡水区,其电压梯度较高,有利于弱电解质的离除和清除。同时,此处水的电离滤也较高,树脂处于较高的活化状态。
对EDI影响较大的污染物包括硬度(钙。镁)、有机物、固体悬浮物、变价金属离子(铁)、氧化剂(氯、臭氧)以及二氧化碳(CO2)。
氯和臭氧会氧化离子交换树脂和离子交换膜,引起EDI组件功能降低。氧化还会使TOC含量明显增加。氧化副厂品会污染离子交换树脂和膜,降低离子迁移速度。另外,氧化作用使得树脂破裂,通过组件的压力损失将增加。
铁和其它的变价金属离子可对树脂氧化起催化作用,降低树脂和膜的性能。
硬度能在反渗透和EDI单位中引起结垢。结垢一般在浓水室膜的表面发生,该处PH值较高。此时,浓水入水和出水间的压力差增加,电流量降低。EDI组件设计采取避免结垢的措施。不过,使入水硬度降低到Z小将会延长清晰周期。
悬浮物和胶体会引起膜和树脂的污染和堵赛,树脂间隙的堵赛导致EDI组件的压力损失增加。
有剂物被吸引到树脂和膜的表面导致其被污染,使得被污染的膜和树脂迁移离子的效率降低,膜堆电阻将增加。
二氧化碳有两种效果。首先,CO32和CA2+、MG2+形成碳酸盐类结垢,这种垢的形成与给水的离子浓度和PH有关。其次,由于CO2的电荷变化与PH值有关,而被其它RO和EDI的去除
EDI(Electrodeionization)又称电除盐,是国际上20世纪90年代开始逐渐发展起来的新型纯水、超纯水制备技术,是纯水生产技术史上的一次革命性的进步。该技术巧妙地将电渗析技术和离子交换技术相融合,通过阴、阳离子交换膜对阴、阳离子的选择性透过作用与离子交换树脂对离子的交换作用,在直流电场的作用下实现离子的定向迁移,从而完成水的深度除盐,同时水电离解产生的氢离子和氢氧根离子对离子交换树脂进行再生,因此不需酸碱化学再生而能连续制取超纯水。它具有技术先进、操作简单和优异的环保特性,是洁净生产技术,在电子、电力、医药、化工和实验室等领域得到日趋广泛的作用。