品牌
其他品牌
货号
7878
规格
6V60AH
供货周期
现货
主要用途
精密仪器 医疗设备 通讯基站 通信电源 后备电源 应急电 安防 发电厂 炼钢厂
应用领域
地矿,能源,电子/电气/通讯/半导体,铁路/船舶/交通,电池/电源
理士LEOCH蓄电池DJM660/6V60AH系列产品介绍
理士在实践中不断开拓创新、努力进取。在品质控制上,成立有专业的质量管理ZX,成功通过了ISO9001、TS16949、ISO14001、OHSAS18001等一系列认证。在技术创新上,企业与国外电池公司进行了多项技术协作,引进国内外先进设备和仪器,拥有多项国家技术,制造能力达到了先进水平。并与国内知名高校进行持续地技术交流合作,建立产学研基地,提高企业自主创新能力,为企业早日成为化的,有竞争力的蓄电池领军制造商,奠定了坚实的基础。

网络能源:理士国际生产的通信、UPS电池等网络能源产品广泛应用于各级通信网络和数据ZX,为通信网络正常运行提供关键保障。排名前10的通信运营商中,有5家使用理士电池。利用业界先进的生产设备、设计理念及生产工艺极大的确保理士电池在使用寿命、产品性能、一致性方面能满足客户的各类需求。
启动电池:理士起动电池主要应用于汽车起动、摩托车起动和船舶起动等,产品供给知名配额套厂商及售后市场。拥有国际上先进的铸带拉网、连铸连轧极板生产技术,不断的行业创新和技术突破,理士成为制定国内外铅酸蓄电池技术标准主要成员单位,ZG起停用铅酸蓄电池行业标准牵头制定单位,以及AGM起停电池与EFB起停电池先锋企业。
动力电池:理士动力电池主要应用于电动自行车、电动三轮车、低速电动汽车、高尔夫球车和观光车,产品主要供给行业主流的生产厂商。拥有世界上先进的生产设备及动力电池技术研发设备。规范的生产工艺,流程化的生产体系,涵盖二十六项关键工艺,100余道质量检测标准和工序,超过一万次的自放电检测,每一项工艺都能符合电动车行业规范要求和蓄电池生产管理规范。
产品规格表
电池型号 | 电压 (V) | 额定容量 (AH) | 外形尺寸(mm) | 端子形式 |
20HR | 10HR | 5HR | 3HR | 1HR | 长 | 宽 | 高 | 总高 |
DJM1238 | 12 | 40.2 | 38.0 | 33.3 | 30.3 | 23.4 | 197±2 | 165±1 | 170±1 | 170±1 | T6 |
DJM1240 | 12 | 42.4 | 40.0 | 35.0 | 31.8 | 24.6 | 197±2 | 165±1 | 170±1 | 170±1 | T6 |
DJM1245 | 12 | 47.8 | 45.0 | 39.4 | 35.7 | 27.7 | 197±2 | 165±1 | 170±1 | 170±1 | T6 |
DJM1250 | 12 | 53.0 | 50.0 | 43.8 | 39.9 | 30.8 | 257±2 | 132±1 | 200±2 | 200±2 | T6 |
DJM1255 | 12 | 58.4 | 55.0 | 48.2 | 43.8 | 33.8 | 229±2 | 138±1 | 205±2 | 226±2 | T6 |
DJM1260 | 12 | 63.6 | 60.0 | 52.5 | 47.7 | 36.9 | 259±2 | 168±1 | 208±2 | 214±2 | T6 |
DJM1265 | 12 | 69.0 | 65.0 | 57.0 | 51.6 | 40.0 | 348±3 | 167±1 | 178±1 | 178±1 | T6 |
DJM1275 | 12 | 79.6 | 75.0 | 65.5 | 59.7 | 46.1 | 348±3 | 167±1 | 178±1 | 178±1 | T6 |
DJM1275H | 12 | 79.6 | 75.0 | 65.5 | 59.7 | 46.1 | 259±2 | 168±1 | 208±2 | 230±2 | T6 |
DJM1280 | 12 | 84.8 | 80.0 | 70.0 | 63.6 | 49.2 | 259±2 | 168±1 | 208±2 | 214±2 | T6 |
DJM1290 | 12 | 95.4 | 90.0 | 79.0 | 71.7 | 55.4 | 330±3 | 173±1 | 212±2 | 220±2 | T11 |
DJM1290H | 12 | 95.4 | 90.0 | 79.0 | 71.7 | 55.4 | 305±3 | 168±1 | 207±2 | 213±2 | T6 |
DJM12100 | 12 | 106 | 100 | 87.5 | 79.5 | 61.5 | 330±3 | 173±1 | 212±2 | 220±2 | T11 |
DJM12120 | 12 | 127 | 120 | 105 | 95.4 | 73.8 | 410±3 | 177±1 | 225±2 | 225±2 | T11 |
DJM12140 | 12 | 148 | 140 | 123 | 111 | 86.1 | 344±3 | 171±1 | 274±2 | 280±2 | T11 |
DJM12150 | 12 | 159 | 150 | 132 | 119 | 92.3 | 485±3 | 170±1 | 240±2 | 240±2 | T11 |
DJM12180 | 12 | 191 | 180 | 158 | 143 | 111 | 530±3 | 209±2 | 214±2 | 220±2 | T11 |
DJM12200 | 12 | 212 | 200 | 175 | 159 | 123 | 522±3 | 240±2 | 218±2 | 224±2 | T11 |
DJM12230 | 12 | 244 | 230 | 202 | 183 | 141 | 522±3 | 240±2 | 218±2 | 224±2 | T11 |
DJM12250 | 12 | 266 | 250 | 219 | 199 | 154 | 522±3 | 268±2 | 220±2 | 226±2 | T11 |
DJM660 | 6 | 63.6 | 60.0 | 52.5 | 47.7 | 36.9 | 185±1 | 112±1 | 205±2 | 205±2 | T3 |
DJM6100 | 6 | 106 | 100 | 87.5 | 79.5 | 61.5 | 195±1 | 170±1 | 206.5±2 | 212.5±2 | T6 |
DJM6120 | 6 | 127 | 120 | 105 | 95.4 | 73.8 | 280±2 | 128±1 | 203±2 | 203±2 | T6 |
DJM6150 | 6 | 159 | 150 | 132 | 119 | 92.3 | 260±2 | 180±1 | 247±2 | 253±2 | T7 |
DJM6180 | 6 | 191 | 180 | 158 | 143 | 111 | 322±3 | 178±1 | 228±2 | 234±2 | T11 |
DJM6200 | 6 | 212 | 200 | 175 | 159 | 123 | 322±3 | 178±1 | 228±2 | 234±2 | T11 |

理士LEOCH蓄电池DJM660/6V60AH系列产品介绍
极板硫化
极板硫化是蓄电池Z常见故障之一。蓄电池长期充电不足或放电后长时间未充电,极板上会生成一层白色大晶粒硫酸铅。正常充电时,这些大晶粒的硫酸铅不能转化为二氧化铅和海绵状铅,这种现象称为硫酸铅硬化,简称硫化。这种粗而硬的硫酸铅晶粒导电性差,会堵塞极板表面活性物质的孔隙,阻碍电解液的渗透和扩散,使蓄电池的内阻增加,容量和起动性能下降。
故障现象
放电时蓄电池容量很快下降,端电压很快降低;充电时电压很快上升,电解液温度很快升高,但电解液密度却上升较慢且不能达到规定值,且过早产生气泡,甚至—充电就有气泡。
故障原因
(1)蓄电池长期充电不足或放电后未及时充电。正常放电时,极板上形成的硫酸铅晶粒较小,充电时能够完全转化为活性物质。但如果长时间处于亏电状态,极板上的部分硫酸铅不能及时还原为活性物质,随着温度的降低,部分硫酸铅会从电解液中饱和析出,结晶成粗晶粒硫酸铅附着在极板表面使之硫化。
(2)电解液液面高度过低。电解液液面高度过低时,极板露出液面部分会与空气接触
而氧化,汽车行驶颠簸时,电解液会不时地与极板上部氧化部分接触而产生硫酸铅。
(3)电解液密度过高、电解液不纯或环境温差较大。电解液密度过高或电解液不纯时,蓄电池内部容易形成电位差,造成自放电;而环境温度急剧变化时,硫酸铅容易产生再结晶现象,生成大晶粒的硫酸铅。
(4)长时间小电流深度放电,使极板深处的活性物质生成硫酸铅,而发电机向蓄电池充电时,不能使这部分硫酸铅还原,长时间就变成大晶粒的硫酸铅。
对于腐蚀较轻的蓄电池,电解液中如有杂质,应倒出电解液,并反复用蒸馏水清洗,然后再加入新的电解液,充电后即可使用;对于腐蚀较严重的蓄电池,如果是电解液密度过高,可将其调整到规定值,在不充电的情况下继续使用;对于腐蚀非常严重的蓄电池,如筋条、框架断裂,活性物质脱落等,则需要更换极板。
五、单个电池极性颠倒
1.故障现象
单个电池极性颠倒。
2.故障原因
如果电池组中单个电池容量过低,放电时便会先放完所储存的电量,电压降低至远低于其它单个电池。此时,在电池组继续放电过程中,该单个电池会被其它电池反充电,把原来的正极板变为负极板,原负极板变为正极板,从而使电池组的电压很快下降。
