品牌
其他品牌
货号
1265
规格
6V4AH
供货周期
现货
主要用途
精密仪器 医疗设备 通讯基站 通信电源 后备电源 应急电 安防 发电厂 炼钢厂
应用领域
地矿,能源,电子/电气/通讯/半导体,铁路/船舶/交通,电池/电源
赛特蓄电池BT-6M4.0AC/6V4AH安防应急电
赛特蓄电池电源有限公司是国内较早研发和生产阀控式密封铅酸蓄电池的企业之一。 公司创建于1997年,座落在福建省泉州市洛江区,占地总面积22000平方米,建筑面积20000多平方米。公司注册资本3000万元,现有资产7000万元元,年产值达1.5亿元以上。

1 布氏硬度的技术参数
1.1 试验力: 306N(31.25kg)、613N(62.5kg)、1839N(187.5kg)允差±1.0%
1.2 球压头:Ф2.5mm、Ф5mm
1.3 布氏硬度计示值的允许误差及示值重复性
1.4 布氏硬度测量范围:8HBW~650HBW
1.5 使用2.5X物镜,测量显微镜放大了37.5倍。
1.6 用2.5X物镜时目镜毂轮Z小分度值L=0.004mm
2 使用前的准备工作
2.1 被测试件的表面应平整光洁,不得有污物,必须保证压痕对角线能精确地测量.
2.2 试件应稳定地放在工作台上,接触面必须干静,试验过程中试件不得移动,并保证试验力垂直施加于试件上。
2.3 试件的Z小厚度应大于压痕深度的10倍。测试后,试件背面不得有可见变形痕迹。布氏压痕平均直径与试样Z小厚度关系(表13)。
3 布氏硬度计的操作顺序
3.1 布氏硬度操作顺序与维氏相近,区别于试验力的保持时间;黑色金属10~15秒、有色金属30~35秒,当布氏硬度值小于35时,保持时间60秒。
3.2 两相邻压痕ZX之间的距离及压痕ZX至标准块边缘的距离应大于压痕对角线长度的3倍,每个压痕直径的测量在相互垂直的两个方微量上进行。取其平均值,两垂直方向直径之差于其中较短的直径之比不应大于1%。
3.3 按上述方法所测得的硬度平均值于标准块硬度值之差除以标准块硬度值,用百分比表示,为硬度计的示值误差;硬度值中值与Z小值之差,除以硬度值平均值,为硬度计的示值重复性(表12)。
3.4 例:用用2.5X物镜测量,球压头Ф2.5mm,在1839N(187.5kg)试验力作用下测试布氏硬度值(图7)。
L=IXn 其中:L——压痕对角线长度(mm)
n——压痕测量实际格数
I——测微目镜毂轮Z小分度值
当使用2.5X物镜时,I=0.0004mm,当使用5X物镜时,I=0.002mm
则L=0.004×(565-281.3)=1.1348,查布氏硬度对照表得
175HBW2.5/187.5
型号 | 额定电压( V ) | 额定容量( AH ) | 外形尺寸(mm) | 参考重量 ( kg ) | 端子 | 长 | 宽 | 高 | 总高 | 形式 |
BT-4M4.0AC | 4 | 4.0 | 47 | 47 | 102 | 106 | 0.47 | F0 |
BT-6M1.3AC | 6 | 1.3 | 98 | 24 | 52 | 58 | 0.29 | F0 | BT-6M2.8AC | 6 | 2.8 | 66 | 34 | 98 | 102 | 0.57 | F0 | BT-6M3.2AC | 6 | 3.2 | 126 | 34 | 61 | 65 | 0.61 | F0 | BT-6M4.0AC | 6 | 4.0 | 70 | 47 | 100 | 104 | 0.68 | F1/F2 | BT-6M4.C | 6 | 4.5 | 70 | 47 | 100 | 104 | 0.74 | F1/F2 | BT-6M5.0AT | 6 | 5.0 | 170 | 35 | 70 | 75 | 0.85 | F3 | BT-6M7.0AC | 6 | 7.0 | 151 | 35 | 94 | 98 | 1.04 | F1/F2 | BT-6M10AC | 6 | 10 | 151 | 50 | 93 | 98 | 1.60 | F1/F2 | BT-6M12AC | 6 | 12 | 151 | 50 | 93 | 98 | 1.75 | F1/F2 | BT-12M0.8AC | 12 | 0.8 | 97 | 25 | 63 | 63 | 0.36 | 引线 | BT-12M1.3AT | 12 | 1.3 | 97 | 44 | 52 | 58 | 0.55 | F0 | BT-12M2.2AT | 12 | 2.2 | 178 | 35 | 61 | 66 | 0.92 | F0 | BT-12M2.3AC | 12 | 2.3 | 71 | 48 | 99 | 103 | 0.73 | F0 | BT-12M2.8AC | 12 | 2.8 | 71 | 48 | 99 | 103 | 0.86 | F0 | BT-12M3.3AT | 12 | 3.3 | 135 | 68 | 62 | 67 | 1.32 | F0 | BT-12M3.6AT | 12 | 3.6 | 135 | 68 | 62 | 67 | 1.40 | F0 | BT-12M4.0AC | 12 | 4.0 | 90 | 70 | 101 | 107 | 1.42 | F1/F2 | BT-12M4.C | 12 | 4.5 | 90 | 70 | 101 | 107 | 1.44 | F1/F2 | BT-12M5.0AC | 12 | 5.0 | 140 | 47 | 101 | 107 | 1.55 | F1/F2 | BT-12M7.0AT | 12 | 7.0 | 151 | 66 | 95 | 100 | 2.11 | F1/F2 | BT-12M7.C | 12 | 7.5 | 151 | 66 | 95 | 100 | 2.27 | F1/F2 | BT-12M8.0AC | 12 | 8.0 | 151 | 66 | 95 | 100 | 2.40 | F1/F2 | BT-12M8.C | 12 | 8.5 | 151 | 66 | 95 | 100 | 2.55 | F1/F2 | BT-12M10AC | 12 | 10 | 151 | 98 | 95 | 99 | 3.17 | F1/F2 | BT-12M12AC | 12 | 12 | 151 | 98 | 95 | 99 | 3.40 | F1/F2 | BT-12M14AC | 12 | 14 | 151 | 98 | 95 | 99 | 3.75 | F1/F2 | BT-12M17AC | 12 | 17 | 181 | 77 | 167 | 167 | 5.15 | F6/F38 | BT-12M22AC | 12 | 22 | 181 | 78 | 175 | 175 | 6.04 | F26 | BT-12M24AT(W) | 12 | 24 | 174 | 166 | 126 | 126 | 7.65 | F7/F40 | BT-12M24AT(L) | 12 | 24 | 165 | 126 | 174 | 174 | 7.62 | F6/F38 | BT-12M33AC | 12 | 33 | 197 | 131 | 154 | 165 | 10.3 | F8/F20 |
|

赛特蓄电池BT-6M4.0AC/6V4AH安防应急电
“低碳经济”越来越受到众人的认同,若要实现节能减排的目标,就必须对能源进行精确采集、计量与实时监控、分析,并对负荷进行控制,这就要求仪器仪表、尤其是电能计量仪表和用电自动化管理系统产品具备高智能、网络化、可靠性强的特点。
作为一种以低能耗、低污染、低排放为基础的经济模式,“低碳经济”的概念自2003年首次提出以来,已经成为一种公认的可持续发展模式,并被认为是人类社会继农业文明、工业文明之后的又一次重大进步。“低碳经济”是指在可持续发展理念指导下,通过技术进步、新能源开发、产业转型、制度创新等多种手段,尽可能地减少煤炭石油等高碳能源消耗,限制温室气体排放,达到经济社会发展与生态环境保护双赢的一种经济发展模式。其实质是能源GX利用、清洁能源开发、追求绿色GDP的问题,核心是能源技术和减排技术创新、产业结构和制度创新以及人类生存发展观念的根本性转变。
世博首场论坛低碳论坛发出了“低碳行动”的倡议,随着“低碳世博”在世人面前精彩呈现,低碳、环保等理念越来越受推崇。低碳化的浪潮急速来临,低碳经济成为热点问题,应该说是意料之中的事情。内外因的综合作用力,正推动着我国走向低碳经济的时代。
仪器仪表行业研发的新方向
节能降耗、减少排放和低碳经济成为长期发展趋势,上述趋势也带动了一批高速发展的新产业。例如,风电、核电、智能电网、高速列车和轨道交通等,这些产业对仪器仪表提出了新的要求。
若要实现节能减排的目标,就必须对能源进行精确采集、计量与实时监控、分析,并对负荷进行控制,这就要求仪器仪表、尤其是电能计量仪表和用电自动化管理系统产品具备高智能、网络化、可靠性强的特点。
虽然许多仪器仪表供应商的产品不能直接产生低碳效益,但是供应商本身却可以提供先进的仪表,以提高用户的生产效率,提升产品质量,监控排放,为低碳经济作出贡献。
我国仪器仪表行业还处于整体实力比较弱的阶段,要注重产品科技含量的提升。其中,一个很重要的方向是产品的智能化。智能化产业既是低碳经济,又具有先进的技术,符合目前的整体经济发展方向。不过,我国智能化领域Z薄弱、Z需要发展的恰恰是仪器、仪表、传感器等基础产业。智能化产业的前行依赖生产仪器、仪表等基础产业的进步,因此,仪器仪表行业应抓住当前机遇,努力开发新产业需要的新型仪器仪表产品。
