西门子G120变频器1.1千瓦
信誉,客户至上是公司成立之初所确立的宗旨,在公司领导的严格要求和员工们不折不扣地贯彻执行下发展延续至今。“假一罚十”一直是我公司的主动承诺。
承诺一:1、保证全新原装进口
承诺二:2、保证安全准时发货
承诺三:3、保证售后服务质量
流程一:1、客户确认所需采购产品型号
流程二:2、我方会根据询价单型号查询价格以及交货期,拟一份详细正规报价单
流程三:3,客户收到报价单并确认型号无误后订购产品
流程四:4、报价单负责人根据客户提供型号以及数量拟份销售合同
流程五:5、客户收到合同查阅同意后盖章回传并按照合同销售额汇款到公司开户行
流程六:6、我公司财务查到款后,业务员安排发货并通知客户跟踪运单
1. CP243-1以太网向导配置
CP243-1模块是S7-200系列产品中一一款以太网通信模块,它既可以作为西门子以太网S7通信中的客户端,也可作为服务器。那么,如果想通过以太网通信与PC机中的STEP 7-Micro/WIN软件通信,实现编程的上载、下载或在线监控,以太网向导该如何配置呢?下面将对CP243-1的以太网向导配置做详细描述。
首先,通过PC/PPI电缆使PC机与S7-200的通信成功,然后进入工具中的以太网向导配置界面,如图1所示:
图 1 以太网向导配置
进入到向导配置界面中,将会看到如图2所示的界面。点击“读取模块”即可读出CP243-1的模块信息,然后双击模块信息,将模块位置添加成功。
西门子G120变频器1.1千瓦
图2 模块位置读取
每个CP243-1模块都需要配置一个IP地址,如图3的界面所示。IP地址的设置需要在指定的对话框中进行设置。
图3 IP地址分配界面
点击图3中标注的选项,进入图4界面。在该界面中的IP地址栏内填入与PC机同一个网段的IP地址,然后点击保存,并退出该界面。
图4 IP地址设定
CP243-1模块需要占用一个QB字节,该字节的地址不能任意填写,需要进行计算(如果通过自动读取模块位置的方式则会自动计算)。计算的规则就是从CPU本体的输出字节开始计算,依次排列到CP243-1的模块位置即可;也可以通过查看PLC菜单中的信息,找到CP243-1模块输出的起始地址。CP243-1模块的连接资源数目为8个S7连接加一个PG资源。该PG资源为S7-200的编程软件,所以在图5中可以不用建立连接数目。
图5 设定QB字节地址及连接数目
图6中会对以太网向导配置分配V存储区地址 ,该V区地址在程序的其它地方不能被再次使用。
图6 分配V存储区地址
2. CP243-1模块的编程与通信
当配置完以太网向导后,在调用子程序中会找到向导生成的子程序,将其调用在主程序中,如图7所示:
图7 以太网初始化程序
全部编译后若没有错误就可以下载到PLC中。下载成功后,需要断电再上电使模块配置生效,此时CP243-1模块上面的指示灯状态为LINK灯与RUN灯常亮,RX/TX灯闪烁。
在设置 PG/PC 接口中,选择相应的TCP/IP协议,再打开通信的对话框,在IP地址栏里选择组态过的IP地址,然后点击双击刷新按钮即可找到对应的CPU地址,如图8所示。
图8 通过以太网方式连接S7-200
至此,CP243-1与PC机上的STEP 7-Micro/WIN软件就连接成功了。这时,CP243-1的CFG灯也会亮橘黄色,代表S7-200编程软件与CP243-1模块以太网连接成功,可以完成上载、下载以及在线监控程序任务。
S7-200支持的通信协议
表1. S7-200系统支持的通信协议略表
协议类型 | 端口位置 | 接口类型 | 传输介质 | 通信速率 | 备注 |
---|
PPI | EM241模块 | RJ11 | 模拟电话 | 33.6Kbits/s | 数据传输速率 |
---|
CPU口0/1 | DB-9针 | RS-485 | 9.6K,19.2K,187.5K | 主、从站 |
MPI | 19.2K,187.5K | 仅从站 |
---|
EM277 | DB-9针 | RS-485 | 19.2K...187.5K...12M | 速率自适应 从站 |
PROFIBUS-DP | 9.6K,19.2K...187.5K...12M |
---|
S7协议 | CP243-1/ CP243-1 IT | RJ45 | 以太网 | 10Mbits/s, 100Mbits/s | 自适应 |
---|
AS-Interface | CP243-2 | 接线端子 | AS-i网络 | 5/10ms循环周期 | 主站 |
---|
USS | CPU口0 | DB-9针 | RS-485 | 1200bits/s...9.6K...115.2K | 主站 自由口库指令 |
---|
Modbus RTU | 主站/从站 自由口库指令 |
---|
EM241 | RJ11 | 模拟电话 | 33.6Kbits/s | 数据传输速率 |
自由口 | CPU口0/1 | DB-9针 | RS-485 | 1200...9.6K...115.2K | |
---|
| | | | | |
---|
网络通信
一些通信标准只支持一对一的通信方式;另一些支持网络通信。S7-200支持多种网络通信方式。
网络通信协议要比一对一的通信更为复杂。网络通信对网络中的设备也有一定的要求,通信设备能否完全符合网络通信协议的要求会影响、制约实现整个网络通信的完整功能。考察这些网络通信协议的要求,对于项目的规划、设计、调试具有重要的意义。选用适当的设备可以有目的地利用网络通信要求的特点,做到经济合理。
通信主站和从站
通信协议规定了通信设备在网络中的角色,可分为:
- 通信从站:从站不能主动发起通信数据交换,只能响应主站的访问,提供或接受数据。从站不能访问其他从站。在多数情况下,S7-200在通信网络中作为从站,响应主站设备的数据请求。
- 通信主站:可以主动发起数据通信,读写其他站点的数据。
S7-200 CPU在读写其他S7-200 CPU数据时(使用PPI协议)就作为主站(PPI主站也能接受其他主站的数据访问);S7-200通过附加扩展的通信模块也可以充当主站。
只有一个主站,其他通信设备都处于从站通信模式的网络就是单主站网络。单主站网络的例子有:
- 一个S7-200 CPU和Micro/WIN(编程计算机)的通信
- 一个S7-200 CPU和一个HMI(如TD200)的通信
- 多个CPU联网(但它们都处于PPI从站模式时),与Micro/WIN的通信
- 多个CPU联网,网络上只有一个HMI(如TP170B等)
- 一个CPU使用USS协议与一个或多个西门子驱动装置通信
- 一个Modbus RTU主站与从站的通信
一个通信网络中,如果有多个通信主站存在,就称为多主站网络。属于多主站网络的情况有:
- 一个S7-200 CPU连接一个HMI,同时需要Micro/WIN的编程通信
- S7-200 CPU联网,有CPU做PPI主站访问其他CPU的数据,同时需要Micro/WIN编程、监视
- CPU联网,有两个以上的CPU做PPI通信主站
- 一个S7-200 CPU连接多个HMI
- 联网的多个CPU,连接多个HMI
- 上述情况的组合
单主站和多主站网络的状态并不总是不变的。例如一个仅包括一个CPU和一个TD200的单主站网络,如果要与Micro/WIN进行编程通信,它就变成了多主站网络。
服务器和客户端
服务器(Server)与客户端(Client)的关系有些像从站与主站的关系。服务器总是等待客户端发起数据访问。这个概念常常在以太网通信中使用。
一个通信对象是服务器还是客户端取决于它们在通信活动中的具体作用。例如,CP243-1以太网模块既可以配置为服务器等待客户端来访问,也可以配置为客户端访问其他服务器。CP243-1作为服务器时,运行在计算机上的PC Access软件作为客户端通过CP243-1访问CPU的数据;而PC Access软件本身是OPC Server,OPC Client软件(如支持OPC的HMI软件)可以访问它。
PPI, MPI和PROFIBUS
PPI,MPI和PROFIBUS都是基于OSI(开放系统互联)的七层网络结构模型,符合欧洲标准EN50170所定义的PROFIBUS标准,基于令Pai的的网络通信协议。这些协议是非同步的(串行的)基于字符的通信协议,字符格式包括一个起始位、8个数据位、一个偶校验位和一个停止位。其通信帧包括特定的起始和结束字符、源和目的站的地址、帧长度和数据校验和。
这就是说如果一个网络上有S7-300、S7-200,S7-300之间可以通过MPI或PROFIBUS通信,而在同时在同一个网络上的TP170 micro触摸屏可以与一个S7-200 CPU通信。
S7-200 CN EM 订货号
西门子于 2005 年 12 月 16 日正式发布了 S7-200 CN 系列产品。产品系列中包括 S7-200 CN CPU 和 S7-200 CN EM 扩展模块。
表 1. S7-200 CN EM 订货号
型号 | 规格 | S7-200 CN 订货号 | SIMATIC S7-200 订货号 | CN 模块列表价 (RMB) |
---|
EM 221 CN | 数字量输入模块, 8 输入 24V DC | 6ES7 221-1BF22-0XA8 | 6ES7 221-1BF22-0XA0 | 698.99 |
---|
数字量输入模块, 16 输入 24V DC | 6ES7 221-1BH22-0XA8 | 6ES7 221-1BH22-0XA0 | 1,022.28 |
EM 222 CN | 数字量输出模块, 8 输出 24V DC | 6ES7 222-1BF22-0XA8 | 6ES7 222-1BF22-0XA0 | 830.05 |
---|
数字量输出模块, 8 输出继电器 | 6ES7 222-1HF22-0XA8 | 6ES7 222-1HF22-0XA0 | 961.11 |
EM 223 CN | 数字量输入/输出模块, 4 输入/4 输出 24V DC | 6ES7 223-1BF22-0XA8 | 6ES7 223-1BF22-0XA0 | 847.53 |
---|
数字量输入/输出模块, 4 输入 24V DC/4 继电器输出 | 6ES7 223-1HF22-0XA8 | 6ES7 223-1HF22-0XA0 | 891.21 |
数字量输入/输出模块, 8 输入/8 输出 24V DC | 6ES7 223-1BH22-0XA8 | 6ES7 223-1BH22-0XA0 | 1,240.71 |
数字量输入/输出模块, 8 输入 24V DC/8 继电器输出 | 6ES7 223-1PH22-0XA8 | 6ES7 223-1PH22-0XA0 | 1,328.08 |
数字量输入/输出模块, 16 输入/16 输出 24V DC | 6ES7 223-1BL22-0XA8 | 6ES7 223-1BL22-0XA0 | 2,420.26 |
数字量输入/输出模块, 16 输入 24V DC/16 继电器输出 | 6ES7 223-1PL22-0XA8 | 6ES7 223-1PL22-0XA0 | 2,612.48 |
数字量输入/输出模块, 32 输入/32 输出 24V DC | 6ES7223-1BM22-0XA8 | 6ES7223-1BM22-0XA0 | 5255.40 |
数字量输入/输出模块, 32 输入 24V DC/32 继电器输出 | 6ES7223-1PM22-0XA8 | 6ES7223-1PM22-0XA0 | 5476.68 |
EM 231 CN | 模拟量输入模块,4 输入 | 6ES7 231-0HC22-0XA8 | 6ES7 231-0HC22-0XA0 | 1,555.26 |
---|
2 路输入热电阻 | 6ES7 231-7PB22-0XA8 | 6ES7 231-7PB22-0XA0 | 2,114.45 |
4 路输入热电偶 | 6ES7 231-7PD22-0XA8 | 6ES7 231-7PD22-0XA0 | 2,114.45 |
EM 232 CN | 模拟量输出模块,2 输出 | 6ES7 232-0HB22-0XA8 | 6ES7 232-0HB22-0XA0 | 1,695.06 |
---|
EM 235 CN | 模拟量输入/输出模块, 4 输入/1 输出 | 6ES7 235-0KD22-0XA8 | 6ES7 235-0KD22-0XA0 | 2,062.03 |
---|
电压电流模拟量信号
用户可以使用CPU224XP本体集成的模拟量通道和扩展模块上的模拟量通道接入或者输出相应信号量程的模拟量信号。
2.1 CPU 224 XP(si)的集成模拟量I/O
新产品CPU 224 XP在CPU上集成了两个模拟量输入端口和一个模拟量输出端口。模拟量I/O有自己的一组端子,如果不用,端子可以移走。
技术规格
表. CPU 224 XP本体模拟量I/O规格
| 电压信号 | 电流信号 |
模拟量输入x 2 | ±10 V | - |
模拟量输出x 1 | 0 - 10 V | 0 - 20 mA |
CPU 224 XP 的模拟量输入/输出通道的精度为 12位。具体参数请看《S7-200系统手册》的附录-CPU224 XP模拟量I/O参数表。 CPU 224 XP上的模拟量输入转换速度比模拟量扩展模块慢,要求高的场合请使用模拟量扩展模块。
CPU 224 XP 集成模拟量I/O接线
CPU 224 XP本体集成的模拟量I/O接线图如下:
图. 接线图
图中:
a:此处表示A+和B+都可以接±10V信号
b:电流型负载接在I和M端子之间
c:电压型负载接在V和M端子之间
CPU 224 XP 模拟量相关常问问题
没有。
是这样的。CPU 224 XP本体上的模拟量I/O芯片与模拟量模块所用的不同,应用的转换原理不同,因此精度和速度不一样。
CPU 224 XP本体上的模拟量输入通道的地址为AIW0和AIW2;模拟量输出通道的地址为AQW0。
S7-200的模拟量I/O地址总是以2个通道/模块的规律增加。所以CPU 224 XP后面的个模拟量输入通道的地址为AIW4;个输出通道的地址为AQW4,AQW2不能用。
由于CPU 224 XP本体上的模拟量转换芯片的原理与扩展模拟量模块不同,不需要选择滤波。
S7-224 XP 的两路模拟量输入通道被出厂设置为电压信号(0-10V)输入。为了能够输入电流信号,必须在 A+ 与 M 端 (或 B+ 与 M 端) 之间并入一个500 欧姆的电阻。
与传感器以及电压源的两线制连接方式如图2 所示:
图2
与传感器以及电压源的 3 线制连接方式如图 3 所示:
图3
与传感器以及电压源的 4 线制连接方式如图 4 所示:
图4
与电压输出的变送器及电流源的 4 线制连接方式如图5所示:
图5
注意:
在所有的连接方式中都必须确保外接电流源具有短路保护以防损坏。
以上所示的各种连接方式同样适用于LOGO!基本型 (LOGO! 24?和 LOGO! 12/24) 的模拟量输入。
因为没有充分隔离,外接电阻也可成为干扰源。
为了得到尽量精确的测量结果,推荐使用公差尽可能小的电阻。
应确保当在500欧电阻两端施加大 28.8V 的电压时,输出功率为 1.66W。 市面上流通的电阻的功率大都是 0.25W到 0.5W。
2.3 EM231 4AI和EM235模块的电压电流输入模拟量模块设置
应用模拟量模块时,需要根据输入信号的规格设置右下角的DIP开关(Configuration开关)。DIP开关只对输入信号有效,并且对所有的输入通道都是相同的。
EM231、EM235带模拟量输入通道的模块,还分别有电位器用于对输入信号进行校正。EM231和EM235上的Gain(增益)电位器用于调整输入信号和转换数值的放大关系;EM235上的Offset(偏置)用于对输入信号调零。如果没有精确的信号源,请不要调整。详细调整方法请参照《S7-200系统手册》。
注意:
Gain(增益)和Offset(偏置)电位器不能用于调整0 - 20mA和4 - 20mA输入转换!
S7-200模拟量模块没有0 - 20mA与4 - 20mA电流型输入的选择开关,0/4 - 20mA模拟量信号的DIP开关设置一样,但相应的变换必须用程序实现。
DIP开关设置
表. EM231 4AI DIP开关设置
单极性 | 满量程输入 | 分辨率 |
SW1 | SW2 | SW3 |
ON | OFF | ON | 0 - 10V | 2.5mV |
ON | OFF | 0 - 5V | 1.25mV |
0 - 20mA | 5μA |
双极性 | 满量程输入 | 分辨率 |
SW1 | SW2 | SW3 |
OFF | OFF | ON | ±5V | 2.5mV |
ON | OFF | ±2.5V | 1.25mV |
表. EM235DIP开关设置
单极性 | 满量程输入 | 分辨率 |
SW1 | SW2 | SW3 | SW4 | SW5 | SW6 |
ON | OFF | OFF | ON | OFF | ON | 0 - 50 mV | 12.5μV |
OFF | ON | OFF | ON | OFF | ON | 0 - 100 mV | 25μV |
ON | OFF | OFF | OFF | ON | ON | 0 - 500 mV | 125μV |
OFF | ON | OFF | OFF | ON | ON | 0 - 1 V | 250μV |
ON | OFF | OFF | OFF | OFF | ON | 0 - 5 V | 1.25mV |
0 - 20 mA | 5μA |
OFF | ON | OFF | OFF | OFF | ON | 0 - 10 V | 2.5mV |
双极性 | 满量程输入 | 分辨率 |
SW1 | SW2 | SW3 | SW4 | SW5 | SW6 |
ON | OFF | OFF | ON | OFF | OFF | ±25 mV | 12.5μV |
OFF | ON | OFF | ON | OFF | OFF | ±50 mV | 25μV |
OFF | OFF | ON | ON | OFF | OFF | ±100 mV | 50μV |
ON | OFF | OFF | OFF | ON | OFF | ±250 mV | 125μV |
OFF | ON | OFF | OFF | ON | OFF | ±500 mV | 250μV |
OFF | OFF | ON | OFF | ON | OFF | ±1 V | 500μV |
ON | OFF | OFF | OFF | OFF | OFF | ±2.5 V | 1.25mV |
OFF | ON | OFF | OFF | OFF | OFF | ±5 V | 2.5 mV |
OFF | OFF | ON | OFF | OFF | OFF | ±10 V | 5 mV |
模拟量接线图
下列各图是各种传感器连接到S7-200 模拟量输入模块的示例:
图. 四线制-外供电-电流型信号接线
图 . 二线制-电流测量接线
上图中的L+和M属于为模拟量模块供电的 CPU 传感器电源。如果使用其他外接电源,只要用相应电源的输出端取代上图中的L+和M,而且要使其 M 和为模块供电的 M 连接起来,如图 三线制电流信号测量接线 。
图 . 三线制电流信号测量接线