哪里卖西门子30A电源模块
《销售态度》:质量保证、诚信服务、及时到位!
《销售宗旨》:为客户创造价值是我们永远追求的目标!
《服务说明》:现货配送至全国各地含税(13%)含运费!
《产品质量》:原装,全新原装!
《产品优势》:专业销售 薄利多销 信誉好,口碑好,价格低,货期短,大量现货,服务周到!
大 I/O 能力计算
S7-1200 大I/O能力取决于以下几个因素,这些因素之间互相影响、制约,必须综合考虑:
- CPU 输入/输出过程变量映像区大小
- CPU 本体的 I/O 点数
- CPU 带扩展模块的数目,见表1(CPU 所带智能通讯模块安装于 CPU 左侧,不占用扩展模板资源数)
- CPU 的 5 VDC 电源是否满足所有扩展模块的需要
5 VDC 电源需求请参考 S7-1200 PLC 电源需求与计算,其它影响因素请参考如下表1 。
表1. S7-1200 PLC 影响 I/O 能力的性能参数
CPU 参数 | CPU 1211C | CPU 1212C | CPU 1214C | CPU 1215C | CPU 1217C |
3 CPUs | DC/DC/DC, AC/DC/RLY, DC/DC/RLY |
集成数字量 I/O | 6 输入 / 4 输出 | 8 输入/ 6 输出 | 14 输入 / 10 输出 |
集成模拟量 I/O | 2 输入 | 2 输入/ 2 输出 | 2 输入/ 2 输出 |
过程映像区 | 1024 字节输入 / 1024 字节输出 |
信号板扩展 | 多1个 |
信号模块扩展 | 无 | 多2个 | 多8个 |
大本地数字量 I/O | 14 | 82 | 284 |
大本地模拟量 I/O | 3 | 19 | 67 | 69 | 69 |
通信模块扩展 | 多3个 |
S7-1200 PLC 电源需求与计算
S7-1200 CPU 提供 5 VDC 和 24 VDC 电源:
- 当有扩展模板时,CPU 通过 I/O 总线为其提供 5 VDC 电源,所有扩展模块的 5 VDC 电源消耗之和不能超过该 CPU 提供的电源额定值。若不够用不能外接 5 VDC 电源。
- 每个 CPU 都有一个 24 VDC 传感器电源,它为本机输入点和扩展模块输入点及扩展模块继电器线圈提供 24 VDC。如果电源要求超出了 CPU 模块的电源额定值,你可以增加一个外部 24 VDC 电源来提供给扩展模块。
所谓电源计算,就是用 CPU 所能提供的电源容量,减去各模块所需要的电源消耗量。
S7-1200 系统电源数据简表
详情请参考新的《 S7-1200 系统手册》或模块说明书。
表2. CPU 的供电能力
CPU 型号 | 电流供应 (mA) |
5 VDC | 24 VDC |
CPU 1211C | 750 | 300 |
CPU 1212C | 1000 | 300 |
CPU 1214C | 1600 | 400 |
CPU 1215C | 1600 | 400 |
CPU 1217C | 1600 | 400 |
表3. CPU 上及扩展模块上的数字量输入所消耗的电流
CPU 上及扩展模块上的数字量 | 电流需求 (mA) |
5 VDC | 24 VDC |
每点输入 | ---- | 4 mA/输入 |
注意:如果数字量输入点使用外接24VDC电源,则不必纳入计算。
表4. 数字扩展模块所消耗的电流
数字扩展模块型号 | 订货号 | 电流需求 |
5 VDC (mA) | 24 VDC |
SM 1221 8 x 24 VDC输入 | 6ES7 221-1BF30-0XB0 | 105 | 4 mA/输入 |
SM 1221 16 x 24 VDC输入 | 6ES7 221-1BH30-0XB0 | 130 | 4 mA/输入 |
SM 1222 8 x 24 VDC输出 | 6ES7 222-1BF30-0XB0 | 120 | --- |
SM 1222 16 x 24 VDC输出 | 6ES7 222-1BH30-0XB0 | 140 | --- |
SM 1222 8 x 继电器输出 | 6ES7 222-1HF30-0XB0 | 120 | 11 mA/输出 |
SM 1222 16 x 继电器输出 | 6ES7 222-1HH30-0XB0 | 135 | 11 mA/输出 |
SM 1223 8 x 24 VDC输入/8 x 24 VDC输出 | 6ES7 223-1BH30-0XB0 | 145 | 4 mA/输入 |
SM 1223 16 x 24 VDC输入/16 x 24 VDC输出 | 6ES7 223-1BL30-0XB0 | 185 | 4 mA/输入 |
SM 1223 8 x 24 VDC 输入/8 x 继电器输出 | 6ES7 223-1PH30-0XB0 | 145 | 4 mA/输入 11 mA/输出 |
SM 1223 16 x 24 VDC 输入/16 x 继电器输出 | 6ES7 223-1PL30-0XB0 | 180 | 4 mA/输入 11 mA/输出 |
表5.模拟扩展模块所消耗的电流
模拟扩展模块型号 | 订货号 | 电流需求 (mA) |
5 VDC | 24 VDC |
SM 1231 4 x 模拟量输入 | 6ES7 231-4HD30-0XB0 | 80 | 45 |
SM 1231 8 x 模拟量输入 | 6ES7 231-4HF30-0XB0 | 90 | 45 |
SM 1232 2 x 模拟量输出 | 6ES7 232-4HB30-0XB0 | 80 | 45 (无负载) |
SM 1232 4 x 模拟量输出 | 6ES7 232-4HD30-0XB0 | 80 | 45 (无负载) |
SM 1234 4 x 模拟量输入/2 x 模拟量输出 | 6ES7 234-4HE30-0XB0 | 80 | 60 (无负载) |
SM 1231 4 x TC 模拟量输入 | 6ES7 231-5QD30-0XB0 | 80 | 40 |
SM 1231 4 x RTD 模拟量输入 | 6ES7 231-5PD30-0XB0 | 80 | 40 |
表6.信号板所消耗的电流
信号板型号 | 订货号 | 电流需求 |
5 VDC (mA) | 24 VDC |
SB 1223 2 x 24 VDC 输入/2 x 24 VDC 输出 | 6ES7 223-0BD30-0XB0 | 50 | 4 mA/输入 |
SB 1232 1 路模拟量输出 | 6ES7 232-4HA30-0XB0 | 15 | 40 mA (无负载) |
SB 1221,200kHz 4 x 5 VDC 输入 | 6ES7 221-3AD30-0XB0 | 40 | 15 mA/输入 +15 mA |
SB 1222,200kHz 4 x 5 VDC 输出 | 6ES7 222-1AD30-0XB0 | 35 | 15 mA |
SB 1223,200kHz 2 x 5 VDC 输入/2 x 5 VDC 输出 | 6ES7 223-3AD30-0XB0 | 35 | 15 mA/输入 +15 mA |
SB 1221,200kHz 4 x 24 VDC 输入 | 6ES7 221-3BD30-0XB0 | 40 | 7 mA/输入 +20 mA |
SB 1222,200kHz 4 x 24 VDC 输出 | 6ES7 222-1BD30-0XB0 | 35 | 15 mA |
SB 1223,200kHz 2 x 24VDC输入/2x24 VDC输出 | 6ES7 223-3BD30-0XB0 | 35 | 7 mA/输入 +30 mA |
表7.通讯模块所消耗的电流
通讯模块型号 | 订货号 | 电流供应 (mA) |
5 VDC | 24 VDC |
CM 1241 RS232 | 6ES7 241-1AH30-0XB0 | 220 | --- |
CM 1241 RS485 | 6ES7 241-1CH30-0XB0 | 220 | --- |
电源需求计算实例
以下实例是 PLC 电源计算实例,该 PLC 包括一个 CPU 1214C AC/DC/继电器型、1xSM 1231 4 x 模拟量输入、 3xSM 1223 8 DC输入/8 继电器输出和 1xSM 1221 8DC 输入。该实例一共有 46 点输入和 34 点输出 。电源需求如下表8.所示
表8.电源需求计算实例列表
CPU 电源计算 | 5 VDC | 24 VDC |
CPU 1214C AC/DC/继电器型 | 1600 mA | 400 mA |
减 |
系统要求 | 5 VDC | 24 VDC |
CPU 1214C, 14点输入 | --- | 14 * 4 mA = 56 mA |
1 个 SM 1231 | 1 * 80 mA = 80 mA | 1 * 45 mA = 45 mA |
3 个 SM 1223 | 3 * 145 mA = 435 mA | 3 * 8 * 4 mA = 96 mA |
3 * 8 * 11 mA = 264 mA |
1 个 SM 1221 | 1 * 105 mA = 105 mA | 8 * 4 mA = 32 mA |
总要求 | 620 mA | 493 mA |
等于 |
电流差额 | 5 VDC | 24 VDC |
总电流差额 | 980 mA | - 93 mA |
由表中可以看出,所选 CPU 已经为 SM 提供了足够的 5 VDC 电流,但没有通过传感器电源为所有输入和扩展继电器线圈提供足够的 24 VDC 电流。I/O 需要 493 mA 而 CPU 只能提供 400 mA。则该系统而外需要一个至少为 93 mA 的 24 VDC 电源以运行所有包括的 24 VDC 输入和输出。
常见问题
答:不能,根据模板 5 VDC 电源使用情况选择合适的 CPU 。
CPU 提供的 24 VDC 电源不够用时,能否使用外部电源扩展?
答:可以,根据需要可以选择使用外部电源。
通讯模板(CM)和信号板(SB)是否占用信号扩展模板数量?
答:
- 扩展模板仅指信号模板,安装于 CPU 的右侧,共有 8 个扩展槽位
- 通讯模块安装于 CPU 左侧,并不占用扩展模板资源数
- 信号模块安装于 CPU 上侧,每个 CPU 多只能安装 1 个,并不占用扩展模板资源数
S7-1200 模板安装位置如下:
- 1 号槽位为CPU
- 红色图框为信号板(SB)安装位置
- 蓝色图框内为 101 ~ 103 三个槽位,为通讯模板(CM)安装位置
- 绿色图框内为 2 ~ 9 八个槽位,为信号模板(SM)安装位置
通电时能否插拔模板?哪里卖西门子30A电源模块
答:不能,所有的信号板、信号模板和通讯模板都不支持通电时的插入和拔除 。
CPU224 XP 高速I/O
S7-200 CPU支持6路高速数字量输入(CPU224/226)和两路高速数字量输出(用于PTO/PWM)。
新产品CPU224 XP高速输入中的两路支持更加高的速度。用作单相脉冲输入时,可以达到200KHz;用作双相90°正交脉冲输入时,速度可达100KHz。
CPU224 XP的两路高速数字量输出速率可以达到100KHz。
图1. CPU224 XP数字量接线
图中:
- 高速输出点Q0.0和Q0.1与Q0.2 - Q0.4成组支持5 - 24VDC电压输出
- 特高速输入点I0.3/I0.4/I0.5支持5 - 24VDC电压的源型或漏型输入;同组其他输入点电压可以仍然是24VDC,单要求两者的电源的公共端在1M处连接
CPU224 XP的高速数字量输入
除了其他高速输入端子外,CPU224 XP特有的高速输入端子为I0.3、I0.4、I0.5。
具体位置如图1所示。
这些特高速输入端可用作高速计数器输入端,如表1所示:
表1. CPU224 XP高速输入端子与计数器分配
模式 | 描述 | 输入点 |
---|
| HSCO | I0.0 | I0.1 | I0.2 | |
---|
HSC1 | I0.6 | I0.7 | I1.0 | I1.1 |
HSC2 | I1.2 | I1.3 | I1.4 | I1.5 |
HSC3 | I0.1 | | | |
HSC4 | I0.3 | I0.4 | I0.5 | |
HSC5 | I0.4 | | | |
0 | 带有内部方向控制的单相计数器 | 时钟 | | | |
---|
1 | 时钟 | | 复位 | |
---|
2 | 时钟 | | 复位 | 启动 |
---|
3 | 带有外部方向控制的单相计数器 | 时钟 | 方向 | | |
---|
4 | 时钟 | 方向 | 复位 | |
---|
5 | 时钟 | 方向 | 复位 | 启动 |
---|
6 | 带有增减计数时钟的双相计数器 | 增时钟 | 减时钟 | | |
---|
7 | 增时钟 | 减时钟 | 复位 | |
---|
8 | 增时钟 | 减时钟 | 复位 | 启动 |
---|
9 | A/B相正交计数器 | 时钟A | 时钟B | | |
---|
10 | 时钟A | 时钟B | 复位 | |
---|
11 | 时钟A | 时钟B | 复位 | 启动 |
---|
根据上表可以看出:
- 要达到单相200KHz高速脉冲输入,可以使用HSC4和HSC5,分别输入到I0.3、I0.4
- 要实现双相90°正交高速脉冲输入,可以使用HSC4;此时HSC5因为I0.4被HSC4占用而不能使用
- HSC4可以工作在模式0、1、3、4、6、7、9、10
- HSC5可以工作在模式0
CPU224 XP高速脉冲输出
CPU224 XP的高速脉冲输出Q0.0和Q0.1支持高达100KHz的频率。
常问问题
的高速计数器模式 12,是否可以计数 30 KHz 以上的脉冲?
CPU 224 XP 支持多 100 KHz 的高速脉冲输出。S7-200 系列 CPU 只有高速计数器 HSC0, HSC3 能够被设置为模式 12,使用的输入端子为I0.0, I0.1,而不是特高速输入端子:I0.3、I0.4、I0.5。非特高速脉冲信号输入端由于硬件电路的限制(如光电耦合等)只能支持高 30 KHz 的高速脉冲输入。
用户使用高速计数器模式 12 时不需要任何外部连线,Q0.0(Q0.1) 与 I0.0(I0.1) 通过集成电路内部关联,越过了外部信号处理电路,因此 HSC0(HSC1) 可以计 100KHz 或者更高频率的脉冲。用户在使用向导配置 S7-200 内部 PTO/PWM 操作时,勾选“使用高速计数器HSCx(模式12)自动计数线性 PTO 生成的脉冲”即可。
CPU224 XP的高速输入(I0.3/4/5)是5VDC信号,其他输入点是否可以接24VDC信号?
可以。只需将两种信号供电电源的公共端都连接到1M端子。这两种信号必须同时为漏型或源型输入信号。
CPU224 XP的高速输出点Q0.0和Q0.1接5V电源,其他点如Q0.2/3/4是否可以接24V电压?
不可以。必须成组连接相同的电压等级。
使用以下这些模块,可以通过 RS485 和 RS422 接口进行串行通讯,在图中给出了端子分配。
图1.(RS485)和图2.(RS422)
图3.(RS485)和图4.(RS422)
- S7-1500 CM PtP RS485/RS422 BA/HF
- CP 340 / CP 341
- CP440/CP 441-1 / CP 441-2
图5.(RS485)和图6.(RS422)
图7.和图8.(RS485)
注意:
如果使用了超过 50m 的 RS485 连接线或 RS422 连接线,需要加约 330Ω 的终端电阻。
CM 1241 和 CB 1241 的模块使用其它的终端电阻。
终端和偏置在 RS485 网络的两端设置,中间的设备不需要增加终端和偏置。
ET200SP CM PtP
图1 .显示了 RS485 接口通讯的端子分配。
图. 1
图 2.显示了 RS422 接口通讯的端子分配。
图. 2
S7-1500 CM PtP RS485/RS422 BA/HF, CP 340,CP341,CP440, CP 441-1 和 CP 441-2 通讯模块的 RS485 和 RS422 接口连接
图 3.显示了 RS485 接口通讯的端子分配
图. 3
图 4.显示了 RS422 接口通讯的端子分配
图. 4
ET200S 1SI
图 5.显示了 RS485 接口通讯的端子分配。
图. 5
图 6.显示了 RS422 接口通讯的端子分配。
图. 6
CM1241
图 7 显示了 RS485 接口通讯的端子分配。
可以使用西门子9-针的 PROFIBUS DP 头连接 CM1241。
使用 RS 485 公头连接器可以在一个 RS485 网络中连接多个设备,连接器可以在终端网络选择终端电阻。更多的信息参考下列链接中 S7-1200 手册的第13.2 章节。
注意:下面的特性用于自己设计连接器使用。
Fig. 7
CB 1241
Fig. 8显示了 RS485 连接通讯的端子分配.
CB1241 提供了内部的终端电阻,不具备 9-针的母 D 型连接器。
连接终端电阻时,将 TRA 和 TA 短接,TRB 和 TB 短接。