法国SAPHIR电源有限公司前身成立于1995年,是一家专注于UPS不间断电源、免维护蓄电池、机房精密空调、EPS消防应急电源、稳压电源、柴油发电机组、GZDW直流电源屏、太阳能路灯、监控防雷、机柜布线、牵引用铅酸蓄电池、煤矿用特殊型铅酸蓄电池、电动道路车辆用铅酸蓄电池法国SAPHIR免维护蓄电池的充电方法初始充电电流很,但是衰减很快。主要原因是充电过程产生了极化现象。在密封式免维护蓄电池充电过程,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加,电池温度升,同时缩小了正极板的面积,表现为内阻升,出现所谓的极化现象。 很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之充电,必须尽使通过电池的电流小些。理想条件是加电压等于电池本?的电?势。但是,践表明,蓄电池充电时,加电压必须增到定数值才行而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度超过了蓄电池的平衡电?势值。在化学反应,这种电?势超过热力学平衡值的现象,就是极化现象。1)欧姆极化 充电过程,正负离子向两极迁移。在离子迁移过程不可避免地受到定的阻力,称为欧姆内阻。为了克服这个内阻,加电压就必须额施加定的电压,以克服阻力推?离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加,欧姆极化将造成蓄电池在充电过程的高温。 2)浓度极化 电流流过蓄电池时,为维持正常的反应,理想的情况是电极表面的反应物能及时?到补充,生成物能及时离去。际,生成物和反应物的扩散速度远远比不化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。 3)电化学极化 这种极化是由于电极进行的电化学反应的速度,落后于电极电子运?的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给电?。电极表面负电荷减?,而金属溶解的氧化反应进行缓慢Me-e?Me+,不能及时补充电极表面电子的减?,电极表面带电状态发生变化。这种表面负电荷减?的状态促进金属电子离?电极,金属离子Me+转入溶液,加速Me-e?Me+反应进行。总有个时刻,达到新的?态平衡。但与放电前相比,电极表面所带负电荷数目减?了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减?,电极电势变负。 这3种极化现象都是随着充电电流的增而严重。 二、蓄电池常规充电方法介绍 常规充电制度是依据1940年前国际?认的经验法则设计的。其着名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。际,常规充电的速度被蓄电池在充电过程的温升和气体的产生所限制。这个现象对蓄电池充电所必须的短时间具有重要意义。 般来说,常规充电有以3种。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法,如图2所示。?制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法。 1)二阶段法采用恒流和恒压相结合的充电方法,如图3所示。首先,以恒电流充电至预定的电压值,然后,改为恒压完成剩余的充电。般两阶段之间的转换电压就是第二阶段的恒压。 2)三阶段充电法在充电?始和结束时采用恒流充电,间用恒压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气减到?,但作为种快速充电方法使用,受到定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减?。与恒流充电法相比,其充电过程?接近于充电曲线。用恒定电压快速充电,如图4所示。由于充电初期蓄电池电?势较,充电电流很,随着充电的进行,电流将逐渐减?,因此,只需简易?制系统。 这种充电方法电解水很?,避免了蓄电池过充。但在充电初期电流过,对蓄电池寿命造成很影响,且容易使蓄电池极板弯曲,造成电池报废。 鉴于这种缺点,单纯的恒压充电很?使用,只有在充电电源电压而电流时采用。例如,汽车运行过程,蓄电池就是以恒压充电法充电的。而在使用充电机对蓄电池进行恒压充电时宜采用改进的恒压充电方法即采用限制电流,使电流限不超过蓄电池容的0.25来防止对电池造成损害。