SIEMENS 上海湘驰自动化设备有限公司
我公司经营西门子全新原装现货PLC;S7-200S7-300 S7-400 S7-1200 触摸屏,变频器,6FC,6SNS120 V10 V60 V80伺服数控备件:原装进口电机(1LA7、1LG4、1LA9、1LE1),国产电机(1LG0,1LE0)大型电机(1LA8,1LA4,1PQ8)伺服电机(1PH,1PM,1FT,1FK,1FS)西门子保内全新原装产品‘质保一年。一年内因产品质量问题免费更换新产品;不收取任何费用。咨询。
陈工
24小时: 同步
工作
本公司优势产品; PLC 、触摸屏、变频器、电缆及通讯卡、数控系统、网络接头、伺服驱动、 凡在公司采购西门子产品,均可质保一年,假一罚十
以满足客户的需求为宗旨 , 以诚为本 , 精益求精
S7-300采用了模块式结构,主要由机架(RACK)、电源模块(PS)、ZY处理单元模块( CPU)、接口模块(IM)、信号模块(SM)、功能模块(FM)和通信处理器(CP)等部分组成,如图2-1所示。S7-300的模块都有名称,同样名称的模块根据接口名称和功能的不同,又有不同的规格,在PLC的硬件组态中,以定货号为准。
图2-1 S7-300的硬件组成
(1)ZY处理器单元模块
各种型号的CPU模块有不同的性能,如有的CPU模块集成了数字量和模拟量的I/O通道,有的CPU集成了PROFIBUS-DP的通信接口。CPU模块面板上有状态指示灯、模式转换开关、24 V电源端子、电池盒和存储卡插槽。
(2)电源模块
电源模块(PS)用于将220 V交流电转换为24 V直流电,供给CPU和其他模块使用。电源模块的额定输出电流有2A、SA和10A三种,电源模块的面板上有工作开关和状态指示灯,当电源过载时指示灯会闪烁。
(3)信号模块
信号模块(SM)包括数字量和模拟量的I/O模块,它们作为PLC的过程输入和输出通道。信号模块主要有数字量输入模块SM321、数字量输出模块SM322、模拟量输入模块SM331和模拟量输出模块SM332。模拟量输入模块可以输入热电量、热电阻、直流4~20 mA和直流0~10 V等多种不同类型和不同量程的模拟量信号。信号模块通过背板总线将现场的过程信号传递给CPU。
(4)功能模块
功能模块(FM)主要用于对实时性和存储容量要求较高的特殊控制任务,如计数器模块、快速/慢速进给驱动位置控制模块、电子凸轮控制器模块、步进电动机定位模块、伺服电动机定位模块、定位和连续路径控制模块、闭环控制模块、工业标识系统的接口模块、称重模块、位置输入模块和超声波位置解码器等。
(5)通信处理器
通信处理器(CP)用于PLC与PLC之间、PLC与计算机之间、PLC与其他智能设备之间的通信,它可以将PLC连人PROFIBUS现场总线、AS-1现场总线和工业以太网,或用于实现点对点通信等。通信处理器可以减轻CPU处理通信的负担,并减少用户对通信的编程工作。
(6)接口模块
接口模块(IM)用于组成多机架系统时连接主机架(CR)和扩展机架(ER)。S7 -300通过主机架和3个扩展机架,Z多可以配置32个信号模块.功能模块和通信处理器(需要相应的CPU支持)
对S7-1500 PLC的模拟量模块进行接线,为保证信号安全,必须带有屏蔽支架和屏蔽线夹。另外,模拟量模块还需要使用电源元件,将电源元件插入前连接器,可为模拟量模块供电。电源元件的接线如图5-186所示,其中端子41(L+)和44(M)连接电源电压,通过端子42(L+)和43(M)为下一个模块供电。
模拟量输出模块是指驱动硬件输出和相关数据通路,按照运行方式选择当前的设定值,也可根据需要反向并提供结果给硬件输出或软件输出。模块可以设置为CAS_IN和RCAS_IN自动方式。SP经选择器(SPSELECTOR)对CASIN、SPLOCAL(本机设定)和RCASIN以及反馈值进行选择后输出设定值。 [1]
. 程序设计前的准备工作
程序设计前的准备工作就是要了解控制系统的全部功能、规模、控制方式、输入/输出信号的种类和数量、是否有特殊功能的接口、与其它设备的关系、通信的内容与方式等,从而对整个控制系统建立一个整体的概念。接着进一步熟悉被控对象,可把控制对象和控制功能按照响应要求、信号用途或控制区域分类,确定检测设备和控制设备的物理位置,了解每一个检测信号和控制信号的形式、功能、规模及之间的关系。
2. 设计程序框图
根据软件设计规格书的总体要求和控制系统的具体情况,确定应用程序的基本结构、按程序设计标准绘制出程序结构框图,然后再根据工艺要求,绘出各功能单元的功能流程图。
3. 编写程序
根据设计出的框图逐条地编写控制程序。编写过程中要及时给程序加注释。
4. 程序调试
调试时先从各功能单元入手,设定输入信号,观察输出信号的变化情况。各功能单元调试完成后,再调试全部程序,调试各部分的接口情况,直到满意为止。程序调试可以在实验室进行,也可以在现场进行。如果在现场进行测试,需将可编程控制器系统与现场信号隔离,可以切断输入/输出模板的外部电源,以免引起机械设备动作。程序调试过程中先发现错误,后进行纠错。基本原则是“集中发现错误,集中纠正错误”。
5. 编写程序说明书
在说明书中通常对程序的控制要求、程序的结构、流程图等给以必要的说明,并且给出程序的安装操作使用步骤等.
1、在PLC里建立DB1数据块,里面设两个开关量“PLC秒开关”和“人机响应开关”;
2、人机变量中连接这两个变量;
3、在人机“PLC秒开关”变量的属性----事件----数值变更中添加“取反位”,让“人机响应开关”变量随着“PLC秒开关”变化而变化;
4、在PLC程序块中编程,让“PLC秒开关”每0.5秒反转,再用TON延时指令让“人机响应开关”1秒内没有动作就输出 人机通信失败,因为人机通信异常后“人机响应开关”将不再会发生变化。
位。
这样就实现了坚固而且具有 EMC 兼容性的设计。
随用随建式的背板总线可以通过简单的插入附加的模块和总线连接器进行扩展。S7-300 系列丰富的产品既可以用于集中扩展,也可用于构建带有 ET 200M 的分布式结构;因此实现了经济GX的备件控制。
扩展选件
如果自动化任务需要超过 8 个模块,S7-300 的ZY控制器 (CC) 可以使用扩展装置 (EU) 扩展。ZX架上Z多可以有 32 个模块,每个扩展装置上Z多 8 个。接口模块 (IM) 可以同时处理各个机架之间的通讯。如果工厂覆盖范围很宽,CC/EU 还可以相互间隔较长距离安装(Z长 10m)。
在单层结构中,这可以实现 256 个 I/O 的Z大组态,在多层结构中Z多可以达到 1024 个 I/O。在带有 PROFIBUS DP 的分布式组态中,可以有 65536 个 I/O 连接(Z多 125 个站点,如通过 IM153 连接的 ET200M)。插槽可自由编址,因此无需插槽规则。
S7-300 模块种类丰富,还可以用在分布式自动化解决方案中。
与 S7-300 具有相同结构的 ET 200M I/O 系统通过接口模块不仅可以连接到 PROFIBUS 上还可以连接到 PROFINET 上。
描述
信号模块是 SIMATIC S7-300 进行过程操作的接口。S7-300 模块范围的多面性允许模块化自定义,以满足Z多变的任务。
S7-300 支持多面性技术任务,并提供详尽的通讯选项。除了具有集成功能和接口的 CPU,在 S7-300 设计中还有各种针对技术和通讯的特殊模块。
优势
更换模块后,只需将连接器插入相同类型的新模块中,并保留原来的布线。前端连接器的编码可避免发生错误。
快速连接
连接 SIMATIC TOP 更加简单、快速(不是紧凑 CPU 的板载 I/O)。可使用预先装配的带有单个电缆芯的前端连接器,和带有前端连接器模块、连接线缆和端子盒的完整插件模块化系统。 在上述通信方式下,由于只用两根线进行数据传送,所以不能够利用硬件握手信号作为检测手段。因而在PC机与PLC通信中发生误码时,将不能通过硬件判断是否发生误码,或者当 PC与 PLC工作速率不一样时,就会发生冲突。这些通信错误将导致PLC控制程序不能正常工作,所以必须使用软件进行握手,以保证通信的可靠性。
由于通信是在PC机以及PLC之间协调进行的,所以PC机以及PLC中的通信程序也必须相互协调,即当一方发送数据时另一方必须处于接收数据的状态。如图7-18、图7-19所示分别是PC、PLC的通信程序流程。
图7-18 PC机通信程序流程图
图7-19 S7-PLC通信程序流程图
通信程序的工作过程:PC每发送一个字节前首先发送握手信号,PLC收到握手信号后将其传送回PC,PC只有收到PLC传送回来的握手信号后才开始发送一个字节数据。PLC收到这个字节数据以后也将其回传给PC,PC将原数据与PLC传送回来的数据进行比较,若两者不同,则说明通信中发生了误码,PC机重新发送该字节数据;若两者相同,则说明PLC收到的数据是正确的,PC机发送下一个握手信号,PLC收到这个握手信号后将前一次收到的数据存入指定的存储区。这个工作过程重复一直持续到所有的数据传送完成。
采用软件握手以后,不管PC与PLC的速度相差多远,发送方永远也不会超前于接收方。软件握手的缺点是大大降低了通信速度,因为传送每一个字节,在传送线上都要来回传送两次,并且还要传送握手信号。但是考虑到控制的可靠性以及控制的时间要求,牺牲一点速度是值得的,也是可行的。
PLC方的通信程序只是PLC整个控制程序中的一小部分,可将通信程序编制成PLC的中断程序,当PLC接收到PC发送的数据以后,在中断程序中对接收的数据进行处理。PC方的通信程序可以采用VB、VC等语言,也可直接采用西门子专用组态软件,如STEP7、WinCC。
高组装密度
模块中为数众多的通道使 S7-300 实现了节省空间的设计。可使用每个模块中有 8 至 64 个通道(数字量)或 2 至 8 个通道(模拟量)的模块。
简单参数化
使用 STEP 7 对这些模块进行组态和参数化,并且不需要进行不便的转换设置。数据进行集中存储,如果更换了模块,数据会自动传输到新的模块,避免发生任何设置错误。使用新模块时,无需进行软件升级。可根据需要复制组态信息,例如用于标准机器。返回页首
设计和功能
专用模块
用于测试和时,模拟量模块可插入到 S7-300。该模块通过 LED 转换和指示输出信号,实现对编码器信号的模拟。
该模块可插入到任何地方(不必遵守插槽规则)。该虚拟模块为未组态的信号模块预留了一个插槽。稍后安装该模块时,整个组态的机械配置和地址分配均不会更改。
PLC采用的编程语言有梯形图、布尔助记符、功能表图、功能模块和语句描述编程语言。编程方法的多样性使编程简单、应用面拓展。操作十分灵活方便,监视和控制变量十分容易。
西门子PLC S7-300系列PLC安装及注意事项
西门子S7-300安装注意事项一) 辅助电源功率较小,只能带动小功率的设备(光电传感器等);
西门子S7-300安装注意事项二) 一般PLC均有一定数量的占有点数(即空地址接线端子),不要将线接上;
西门子S7-300安装注意事项三) PLC存在I/O响应延迟问题,尤其在快速响应设备中应加以注意。
西门子S7-300安装注意事项四) 输出有继电器型,晶体管型(高速输出时宜选用),输出可直接带轻负载(LED指示灯等);
西门子S7-300安装注意事项五) 输入/断开的时间要大于PLC扫描时间;
西门子S7-300安装注意事项六) PLC输出电路中没有保护,因此应在外部电路中串联使用熔断器等保护装置,防止负载短路造成损坏PLC;
西门子S7-300安装注意事项七) 不要将交流电源线接到输入端子上,以免烧坏PLC;
西门子S7-300安装注意事项八) 接地端子应独立接地,不与其它设备接地端串联,接地线裁面不小于2mm2;号下的电子电路叫模拟电路。
总线连接器 概要:
用于将 PROFIBUS 节点连接到 PROFIBUS 总线电缆 安捉便 FastConnect 插头采用绝缘刺破连接技尸可确保极短的组装时间 集成端接电阻 (6ES7 972-0BA30-0A0 中不具有) 通过带 Sub-D 接口的连接器可以连接编程器,无需额外安装网络节点
用于 PROFIBUS 的 RS485 总线连接器,可用于连接 PROFIBUS 节点或 PROFIBUS 网络部件到 PROFIBUS 总线电缆提供有各种类型的总线连接器,可优化用于连接的设备:
总线连接器具有轴向电缆引出线(180°),可用于如 PC 和 SIMATIC HMI OP,传输速率高达 12 Mbit/s,带集成的总线端接电阻 带垂直电缆引出线的总线连接器(90°)这种接头采用垂直电缆引出线(有或没有编程器接口),数据传输速率高达 12 Mbit/s,带集成的终端电阻。传输速率为 3、6 或12 Mbit/s 时,在带编程器接口的总线接头和编程器之间,需要使用 SIMATIC S5/S7 连接电缆。
有 30°电缆引出线的总线接头(经济型),无编程器接口,数据传输速率Z大为 1.5 Mbit/s,无集成的总线端接电阻。 PROFIBUS 快速连接 RS485 总线接头(90°或 180°电缆引出线),传输速率Z大为 12Mbit/s,采用绝缘刺破技术可实现快速简单安装(用于硬线和软线)总线连接器可钟插入到 PROFIBUS 站或 PROFIBUS 网络组件的 PROFIBUS 接口(9 针 Sub-D 接口)中。西门子DP接头标准详细介绍:
用于将 PROFIBUS 节点连接到 PROFIBUS 总线电缆。
安装方便:
FastConnect 插头采用绝缘刺破连接技术,可确保极短的组装时间。
集成端接电阻 (6ES7 972-0BA30-0A0 中不具有)
通过带 Sub-D 接口的连接器可以连接编程器,无需额外安装网络节点。
西门子DP接头说明:
用于 PROFIBUS 的 RS485 总线连接器,可用于连接 PROFIBUS 节点或 PROFIBUS 网络部件到 PROFIBUS 总线电缆。
西门子DP接头特性:
提供有各种类型的总线连接器,可优化用于连接的设备:
总线连接器具有轴向电缆引出线(180°),可用于如 PC 和 SIMATIC HMI OP,传输速率高达 12 Mbit/s,带集成的总线端接电阻
带垂直电缆引出线的总线连接器(90°);
这种接头采用垂直电缆引出线(有或没有编程器接口),数据传输速率高达 12 Mbit/s,带集成的终端电阻。传输速率为 3、6 或12 Mbit/s 时,在带编程器接口的总线接头和编程器之间,需要使用 SIMATIC S5/S7 连接电缆。
有 30°电缆引出线的总线接头(经济型),无编程器接口,数据传输速率Z大为 1.5 Mbit/s,无集成的总线端接电阻。
PROFIBUS 快速连接 RS485 总线接头(90°或 180°电缆引出线),传输速率Z大为 12Mbit/s,采用绝缘刺破技术可实现快速简单安装(用于硬线和软线)。
西门子DP接头概述:
总线连接器可直接插入到 PROFIBUS 站或 PROFIBUS 网络组件的 PROFIBUS 接口(9 针 Sub-D 接口)中。
可使用 4 个端子在插头中连接进入和离开的 PROFIBUS 电缆。
通过从外部清晰可见的便于接触的开关,可以连接总线连接器中集成的总线端接器(不适用于 6ES7 972-0BA30-0A0)。在此过程中,连接器中的进线和出线总线电缆是分开的(隔离功能)。
必须在 PROFIBUS 网段的两端进行这种连接。
可使用 4 个端子在插头中连接进入和离开的 PROFIBUS 电缆通过从外部清晰可见的便于接触的开关,可以连接总线连接器中集成的总线端接器(不适用于 6ES7 972-0BA30-0A0)。在此过程中,连接器中的进线和出线总线电缆是分开的(隔离功能)。
总线连接器 概要:用于将 PROFIBUS 节点连接到 PROFIBUS 总线电缆 安装方便 FastConnect 插头采用绝缘刺破连接技术,可确保极短的组装时间 集成端接电阻 (6ES7 972-0BA30-0A0 中不具有) 通过带 Sub-D 接口的连接器可以连接编程器,无需额外安装网络节点用于 PROFIBUS 的 RS485 总线连接器,可用于连接 PROFIBUS 节点或 PROFIBUS 网络部件到 PROFIBUS 总线电缆。提供有各种类型的总线连接器,可优化用于连接的设备:总线连接器具有轴向电缆引出线(180°),可用于如 PC 和 SIMATIC HMI OP,传输速率高达 12 Mbit/s,带集成的总线端接电阻 带垂直电缆引出线的总线连接器(90°);这种接头采用垂直电缆引出线(有或没有编程器接口),数据传输速率高达 12 Mbit/s,带集成的终端电阻。传输速率为 3、6 或12 Mbit/s 时,在带编程器接口的总线接头和编程器之间,需要使用 SIMATIC S5/S7 连接电缆。有 30°电缆引出线的总线接头(经济型),无编程器接口,数据传输速率Z大为 1.5 Mbit/s,无集成的总线端接电阻。 PROFIBUS 快速连接 RS485 总线接头(90°或 180°电缆引出线),传输速率Z大为 12Mbit/s,采用绝缘刺破技术可实现快速简单安装(用于硬线和软线)。总线连接器可直接插入到 PROFIBUS 站或 PROFIBUS 网络组件PROFIBUS 接口(9 针 Sub-D 接口)中。可使用 4 个端子在插头中连接进入和离开的 PROFIBUS 电缆。通过从外部清晰可见的便于接触的开关,可以连接总线连接器中集成的总线端接器(不适用于 6ES7 972-0BA30-0A0)。在此过程中,连接器中的进线和出线总线电缆是分开的(隔离功能)。
6ES7972-0BA12-0XA0兰州西门子DP接头一级代理商
SIMATIC DP,总线连接器,用于PROFIBUS,高达12 MBIT/S,90度出线电缆(W X H X D):15,8 X 54 X 34 MM,端接电阻,带隔离
6ES7972-0BA12-0XA0
SIMATIC DP,总线连接器,用于PROFIBUS,高达12 MBIT/S,90度出线电缆(W X H X D):15,8 X 54 X 34 MM,端接电阻,带隔离
6ES7972-0BA30-0XA0
BUSANSCHLUSS-SIMATIC DP,总线连接器,用于PROFIBUS,带斜出线电缆,绝缘刺破连接装置(W X H X D)15 X 58 X 34 MM,高达1.5 MBIT/S,无 LAN端接电阻
6ES7972-0BA30-0XA0
BUSANSCHLUSS-SIMATIC DP,总线连接器,用于PROFIBUS,带斜出线电缆,绝缘刺破连接装置(W X H X D)15 X 58 X 34 MM,高达1.5 MBIT/S,无 LAN端接电阻
6ES7972-0BA42-0XA0
SIMATIC DP,总线连接器,用于 PROFIBUS UP,传输速率达 12 Mbit/s,带弯式电缆引出口,15.8 X 54 X 39.5 mm(宽 x 高 x 深),端接电阻器,带隔离功能,无编程器插口
6ES7972-0BA42-0XA0
SIMATIC DP,总线连接器,用于 PROFIBUS UP,传输速率达 12 Mbit/s,带弯式电缆引出口,15.8 X 54 X 39.5 mm(宽 x 高 x 深),端接电阻器,带隔离功能,无编程器插口
一、西门子s7-200plc指示灯说明 西门子s7-200plc指示灯说明指示灯通常包括SF、RUN、STOP指示灯和开入开出指示灯,通过SF、RUN和STOP三个指示灯可以判断出CPU的当前运行状态,通过开入开出指示灯可以判断出PLC开入开出点的状态,具体说明如下: 1、SF指示灯:只有plc出现致命错误时点亮(红色),其他情况下均熄灭;故障状态下可以通过菜单栏PLCInformation来查看相应故障信息及故障代码,另PLC帮助文件中附有详细的故障信息及故障代码对照表,可供排查故障时使用。 2、RUN指示灯:CPU处于运行状态时点亮(绿色),CPU处于停止状态时熄灭; 3、STOP指示灯:CPU处于停止状态时点亮(绿色),CPU处于运行状态时熄灭; 4、 开入开出指示灯:位于各开入开出模块上,按位指示,该位为1时点亮(绿色),该位为0时熄灭。 二、西门子s7-200plc拨码开关说明 西门子s7-200plc CPU模块拨码开关包含RUN、TEMP、STOP三个位置,具体说明如下: 1、RUN:PLC上电自动进入运行状态;编程软件中不能对PLC进行RUN(运行)和STOP(停止)操作;运行状态下将拨码开关打到TEMP 位置,不影响运行;运行状态下将拨码开关直接打到STOP位置,则PLC进入停止状态。 2、TEMP:PLC上电自动进入运行状态;编程软件中可以对PLC进行RUN(运行)和STOP(停止)操作;运行状态下将拨码开关打到RUN 位置,不影响运行;运行状态下将拨码开关打到STOP位置,则PLC进入停止状态。 3、STOP:PLC上电自动进入停止状态;编程软件中不能对PLC进行RUN(运行)和STOP(停止)操作;停止状态下将拨码开关打到TEMP位置,不影响运行;停止状态下将拨码开关直接打到RUN位置,则PLC进入运行状态。西门子EM235模拟量输入/输出模块6ES7235-0KD22-0XA0 6ES7235-0KD22-0XA0 SIMATIC S7-200,模拟量I/OEM 235,仅用于S7-22X CPU,4 AI,DC +/-10V;1AQ,DC +/-10V12位转换器 概述 ?用于 SIMATIC S7-200 的模拟量输入和输出 Area of application 模拟量输入/输出模块支持: ?连接控制系统的模拟量过程信号 ?向过程控制系统输出模拟量控制信号 它们转换: ?将过程模拟量信号转换为在SIMATIC S7-200内所处理的数字量信号 ?将S7-200的数字信号转换为过程所需的模拟量信号 Technical Specifications 6ES7 235-0KD22-0XA0 输入电流 从背板总线 5 V DC,大 30 mA 从传感器电流或外部电源 (24 V DC),大 60 mA 功耗 功耗,典型值 2 W 模拟量输入 模拟量输入点数 4 点;差分式输入 电压输入时的允许输入电压(破坏极限),大值 30 V 电流输入时允许的大输入电流 32 mA 输入范围 ?电压 √ ?电流 √ 输入范围(额定值),电压 ?0 ~ +50 mV √ ?0 ~ +100 mV √ ?0 ~ +500 mV √ ?0 至 +1 V √ ?0 至 +5 V √ ?0 至 +10 V √ ?-1 V 至 +1 V √ ?-10 V 至 +10 V √ ?-100 mV ~ +100 mV √ ?-2.5 V 至 +2.5 V √ ?-25 mV ~ +25 mV √ ?-250 mV 至 +250 mV √ ?-5 V 至 +5 V √ ?-50 mV 至 +50 mV √ ?-500随着我国经济进入新常态,加快信息化发展显得至关重要。在此之前,则要先完成工业自动化目标。换言之,只有实现Z基本的工业自动化,才有可能达到更高层级的信息化生产。
数字量:有0和1组成的信号类型,通常是经过编码后的有规律的信号。和模拟量的关系是量化后的模拟量。
模拟量:连续的电压,电流等信号量,模拟信号是幅度随时间连续变化的信号,其经过抽样和量化后就是数字量。
1. 数模转换器是将数字信号转换为模拟信号的系统, [1] 一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。由采样定理,采样信号的频谱想低通滤波便得到原来模拟信号的频谱。一般实现时,不是直接依据这些原理,因为尖锐的采样信号很难获得,因此,这两次滤波(Sa函数和理想低通)可以合并(级联),并且由于这各系统的滤波特性是物理不可实现的,所以在真实的系统中只能近似完成。
2. 模数转换器是将模拟信号转换成数字信号的系统,是一个滤波、采样保持和编码的过程。模拟信号经带限滤波,采样保持电路,变为阶梯形状信号,然后通过编码器,使得阶梯状信号中的 [1各个电平变为二进制码。
1、 XV-VGAV101VGA转AV转换器
可以将电脑输出的VGA信号转换为电视AV可以接受的信号
2、XW-USVGDV
USB转VGA/DVI视频转换器
可以通过USB2.0接口另外添加多至六个显示器窗口,扩展您的Windows桌面到多个显示屏上,并允许同时观看多个程序窗口
3、XW-AVVG101AV转VGA转换器
将模拟AV及S端子视频信号转换成VGA数字信号
4、XW-VGDV101 VGA转DVI转换器
可把普通显卡、VGA或RGBHV矩阵的D-Sub输出口连接到仅有数字输出口的显示器、投影机等高端显示设备。
5、XW-DVVG101 DVI转VGA转换器
可把仅有数字图像输出口的显卡、播放器的输出连接到仅有模拟D-Sub输入接口的显示器、投影机、矩阵切换器等设备
6、XW-AG2HD VGA转HDMI
可以将输入的VGA视频信号转换完整的HDMI信号输出
7、DC2HD DVI转HDMI
可以将输入的DVI视频信号转换完整的HDMI信号输出
8、XW-YB2HD 分量视频转HDMI
可以将输入的分量视频及音频信号转换完整的 HDMI 信号输出
9、VDVR103 视频转DVI+VGA
复合视频、YPrPb和S-Video分量视频转换为DVI信号和VGA信号进行输出
软道语录
数据类型转换器
Hibernate中的数据类型转换器,用于将持久化类的属性值与表的字段值,进行类型转化。
1单片机应用开发从入门到精通
第1章 触摸屏基础知识 1.1 触摸屏技术及发展历程 1.1.1 触摸屏技术 1.1.2 触摸屏发展历程 1.2 触摸屏原理及特性 1.2.1 触摸屏原理 1.2.2 触摸屏特性 1.3 触摸屏分类及性能比较 1.3.1 触摸屏的类型 1.3.2 触摸屏性能比较 1.4 多点触摸技术 1.4.1 多点触摸技术 1.4.2 识别手势方向 1.4.3 识别手指位置 1.4.4 True Touch方案 1.5 触摸屏应用领域及发展趋势 1.5.1 触摸屏的应用领域 1.5.2 触摸屏的发展趋势
第2章 电阻式触摸屏实用技术 2.1 电阻式触摸屏工作原理及特性 2.1.1 电阻式触摸屏工作原理 2.1.2 电阻式触摸屏技术特性 2.1.3 电阻式触摸屏技术动向 2.2 电阻式触摸屏控制与安装技术 2.2.1 电阻式触摸屏人机接口实现 2.2.2 电阻式触摸屏控制技术 2.2.3 电阻式触摸屏安装技术
第3章 电容式触摸屏实用技术 3.1 电容式触摸屏结构及工作原理 3.1.1 电容式触摸技术 3.1.2 表面电容式触摸屏技术 3.1.3 投射电容式触摸屏技术 3.1.4 第三代电容式触摸屏屏幕的技术特性 3.1.5 电容式触摸屏解决方案 3.1.6 电容式触摸屏发展趋势 3.2 电容式触摸屏通信接口与安装技术 3.2.1 Cypress True Touch电容式触摸屏的通信接口 3.2.2 电容式触摸屏安装技术
第4章 红线式触摸屏实用技术 4.1 红外式触摸屏工作原理及特性 4.1.1 红外式触摸屏工作原理 4.1.2 红外式触摸屏发展历程及优缺点 4.2 红外式触摸屏安装技术 4.2.1 红外式触摸屏安装方法 4.2.2 串口及USB口红外式触摸屏安装 4.2.3 WS串口及USB口红外式触摸屏安装 4.2.4 汇冠红外式串口/USB口触摸屏安装技术
第5章 表面声波式触摸屏实用技术 5.1 表面声波式触摸屏原理及特性 5.1.1 表面声波式触摸屏原理 5.1.2 表面声波式触摸屏优缺点及发展趋势 5.2 表面声波式触摸屏安装技术 5.2.1 表面声波式触摸屏安装注意事项 5.2.2 6012S控制卡安装 5.2.3 Kee Touch表面声波式触摸屏安装技术
第6章 触摸屏工程应用 6.1 触摸屏系统工程设计 6.1.1 触摸屏应用定义及选择 6.1.2 触摸屏系统设计 6.2 触摸屏工程应用方案 6.2.1 电子产品触摸屏应用方案 6.2.2 触摸屏与PLC的通信 6.2.3 台达DOP触摸屏工程应用 6.2.4 富士触摸屏与西门子PLC通信
第7章 触摸屏维护与故障处理 7.1 触摸屏维护与使用 7.1.1 触摸屏维护 7.1.2 触摸屏使用 7.2 触摸屏系统故障检查方法 7.2.1 触摸屏系统故障分类 7.2.2 触摸屏系统维修流程 7.2.3 触摸屏系统故障诊断技术与维修原则 7.2.4 触摸屏系统故障检查方法 7.3 触摸屏故障分析及处理方法 7.3.1 红外式触摸屏故障分析及处理方法 7.3.2 电阻式触摸屏故障分析及处理方法 7.3.3 表面声波式触摸屏故障分析及处理方法 7.3.4 电容式触摸屏故障分析及处理方法 7.3.5 HP触摸屏无法执行任何操作
辽宁西门子产品一级代理商经销商辽宁西门子产品一级代理商经销商
一、引言
触摸屏又称为“触控屏”、“触控面板”,是一种代替了鼠标和键盘的与计算机沟通的设备。触摸屏作为一种Z新的电脑输入设备,它是目前Z简单、方便、自然的一种人机交互方式。
触摸屏在范围内有广泛的应用领域,从工厂设备、电子查询设施,到、数码相机、
手机等都可看到触控屏幕的身影。其广泛应用也标志着计算机应用普及时代的真正到来。
二、 触控屏组成
触摸屏由触摸检测部件和触摸屏控制器组成,触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器接收从触摸点检测装置上穿了送来的触摸信息,并将它处理转换成触点坐标,再通过接口传送给ZY处理器CP同时能接收CPU发来的命令并加以执行。触摸屏的基本组成如图1所示,包括以下几个部分:
1.前面板或外框
前面板或外框是终端产品的Z表层。在某些产品中,该外框将透明的盖板围起来,以免受到外部的恶劣气候或潮湿的影响,也防止下面的传感产品受到刻划以及破坏。
2.触控控制器
通常,触控控制器是一个小型的微控制器芯片,它位于触控传感器和PC/或嵌入式系统控制器之间。该芯片可以装配到系统内部的控制器板上。该触控控制器将提取来自触控传感器的信息,并将其转换成PC或嵌入式系统控制器能够理解的信息。
3.触控传感器
触控屏“传感器”是一个带有触控响应表面的透明玻璃板。该传感器被安放到LCD上面,使得面板的触控区域能覆盖显示屏的可视区域。基本上,这些技术都是在触控时,使电流流过面板,从而产生一个电压或信号的变化。这个变化将被触控传感器感应并传输,从而确定屏幕上的触控位置。
4.液晶显示器(LCD)
绝大多数的触控屏系统用于传统的LCD上。用于触控产品的LCD选择方法与传统系统中基本相同,包括分辨率,清晰度,刷新速度,成本等。
除了包括上说所列的硬件部分以外还包含系统软件,软件应保证触控屏和系统控制电路一起工作,使得产品的操作系统能够接受并处理来自触控控制器的触控事件信息。
三、触控屏主要特性
从技术原理角度来讲,触摸屏是一套透明的定位系统。
1.透明性
首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,“透明”,在触摸屏行业里,仅用透明一点来概括它的视觉效果是不够的,它应该至少包括四个特性:透明度、色彩失真度、反光性和清晰度。
2.定位性
其次它是坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统。
3.感应性
再者触摸屏的第三个特性是检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠性、稳定性和寿命。
从目前触摸屏的应用中,人们对触摸屏的性能要求也越来越理性化,不断提高与满足光学特性、耐久性以及可靠性等指标已成为触摸屏制造者不可忽略的因素。
四、触控技术的主流类型及其应用
按照触摸屏的工作原理和传输信息的介质,触摸屏主要分为四种,它们分别为红外线式、表面声波式、电阻式和电容感应式。每一类触摸屏都有其各自的优缺点,都利用ITO做为组件的核心部分,发挥着重要作用。
1.电阻式触控技术
电阻式触控技术是Z常用的触控屏技术。由于是对压力起反应,可以用手指,带手套的手,触控笔,或者像这类的其它的物体进行触摸接触。图2表示了电阻触控屏的结构,图3表示一般电阻触控屏的系统示意图。
1.1电阻式触控技术工作原理
由电阻触摸屏的侧面结构剖视图看出,见图2,它是由一层玻璃作为基层,玻璃表面涂有一层ITO透明导电层,上面在覆盖一层很薄的有弹性的PET薄膜,在PET的内表面也涂有一层ITO导电层,在这两层ITO导电层之间有许多细小的透明隔离点,使得两ITO导电层绝缘。手指触摸按压的表面是一个硬涂层,用以保护下面的PET层。当我们用手指按压屏幕时,PET薄膜会向下弯曲,并使得下面的两层ITO涂层能够相互接触并在该点使上下层电路导通。
在实际工作中,在两层ITO工作面的四周边缘各加装两条导电线路,经控制器分别于两端各设定一直流电压,为两个工作面分别构建一个均匀的电场,形成均匀连续的平行电压分布。如图4a所示,当我们用手指触摸屏幕时,压力使两层导电层在接触点的位置有了电路导通,电阻发生了变化,利用电阻分压原理,产生了模拟电压信号,即触摸传感器工作将压力感应转换为电压信号,见图4b,该信号由控制器处理,进行A/D转换,测量出接触点的模拟电压值VMEAS,再根据这个电压值和VREF电压值的比例公式就能计算出触摸点的X轴和Y轴的坐标,从而确定触摸点的具体位置进而向主机请求输入响应,由主机负责执行完成用户操作。
1.2电阻式触控特点、种类和应用
电阻式触摸屏上下两层采用贴合密封,信号的产生是在夹层中间,所以它可以不受尘埃、水、污物的影响,精确度高,反应灵敏,工作稳定性高。
在图4a中,A或B面两个边缘的条形电极称为感应线,根据触摸屏上的感应线数量,电阻式触摸屏可再分为三大类,分别是4线、5线和8线。4线触摸屏的条形电极安装在两个不同的导电电阻层(X+、X-在同一层,Y+、Y-另一个电阻层上),即如该图所示;5线触摸屏只在底层上有圆形电极(X+、X-、Y+和Y-),顶层用于在触摸过程中测量电压,电场电压只施加在底层上。
8线触摸屏的工作原理与4线触摸屏相似。只是给每一条线增加一个参考电压线,所以Z后的总线数达到8条。新增的4条线分别用于给原来的4条线提供参考电压。
因为成本低廉,触摸感应算法简单,4线触摸屏被广泛用于低端消费电子产品。 5线和8线触摸屏主要用于昂贵的高端YL设备和重要的工业控制器。
2.电容式触控技术
电容式触摸屏与传统的电阻式触摸屏有很大区别。电阻式触控屏幕需靠施力将二块ITO接触在一起;而电容式触摸屏只要用指腹轻轻碰触书写即可,同时能进行多点触控。
2.1电容式触控技术工作原理
电容式触控屏可以简单地看成是由四层复合屏构成的屏体:Z外层是玻璃保护层,接着是ITO导电层,第三层是不导电的玻璃屏,Z内的第四层也是ITO导电层。其中,Z内导电层是屏蔽层,屏蔽内部电气信号,中间的导电层是感应工作层,在其四个角或四条边上引出四个电极,负责触控点位置的感应。
工作时在导电层内部建立一个低电压高频交流电场,当用户触摸电容屏时,由于人体电场,用户手指和工作面形成一个耦合电容(0.1~2个pF单位微小的感应电容),对于高频电流来说,电容是直接导体,就会有一定量的电荷转移到人体,产生一定的感应电流。这个电流从工作面的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置,完成输入请求。电容屏的工作示意图如图5所示。
2.2电容式触控特点、种类和应用
基于电容式触控屏的结构和工作原理,此类触摸屏特点鲜明。电容触摸屏的双玻璃使得透光性较高,防尘、防水、耐磨等方面较好,耐用度高。
电容触控屏技术分为两种:表面电容技术和投射电容技术。
表面电容技术,即它的架构相对简单,采用一层ITO 玻璃为主体,外围至少有四个电极,在玻璃四角提供电压,在玻璃表面形成一个均匀的电场,检测出触控坐标的位置。因为它采用了一个同质的感应层,而这种感应层只会将触控屏上任何位置感应到的所有信号汇聚成一个更大的信号,此类架构决定了表面电容式技术无法实现多点触控功能。
投射电容技术仍是以电容感应为主,但相较于表面电容式触摸屏,投射电容式触摸屏采用多层ITO 层,形成矩阵式分布,以X 轴、Y轴交叉分布做为电容矩阵,当手指触碰屏幕时,可通过X、Y轴的扫描,检测到触碰位置电容的变化,进而计算出手指之所在。基于此种架构,投射电容可以做到多点触控操作。
电容式触摸屏以支持多点触摸和识别迅速在消费便携式终端设备中得到广泛应用,电容式触摸屏的应用也不会仅仅是现有的手机、随身影音播放器等产品。
五、未来的触控技术
从1974开始出现世界Z早的电阻式触摸屏以来,触摸屏的技术经历了从低档向发展的历程,应用范围也较多体现在工业控制和消费电子产品上。触摸屏技术未来的主要发展方向可以由技术和应用这两方面来介绍。
在应用层面上发展多触点触摸技术,提高使用效率;另外还提出了混合式触控技术和触觉反馈技术的概念,前者旨在在一块触控面上采用两种或者两种以上的触控识别技术,达到多种触控技术之间实现优劣互补的目的,后者在可以为人们带来便捷的操作方式和良好的视觉效果的同时, 给用户一个触觉反馈。
在技术层面,触摸屏与平板显示器FPD产业的进一步结合已经成为必然。内嵌式结构触控技术要利用多种技术将触摸传感器与显示器件融为一体,对相关器件的设计和制造都会提出更大的变革,虽然目前还没有实现商业化,但是这种结构的触控技术仍然是未来触控技术的发展方向。
六、结束语
触控技术是集光学、化学、电子学、材料学等学科技术于一体的技术,为用户提供便捷、稳定和精确的人机交互操作方式是新技术追求的动力,伴随着移动互联网技术,人们的日常生活已经接入“触”手可及的后信息化时代。
沪公网安备 31011502008050号