品牌
其他品牌
货号
JYHY1270
规格
12V7AH
供货周期
现货
主要用途
工业,通讯,能源,医疗政府、金融、电信、电力、交通、科研院所、制造业及学校等行业
应用领域
地矿,能源,电子/电气/通讯/半导体,铁路/船舶/交通,电池/电源
金源环宇蓄电池JYHY1270/12V7AH在线咨询
金源环宇蓄电池JYHY1270/12V7AH在线咨询
由于系统采用MPPT 技术来实现功率输出, MOS 的高速导通与关断都会在输出端产生相应干扰谐波, 在太阳能板输出端及铅酸蓄电池间加上超级电容器组可以有效YZ干扰谐波, 保证铅酸蓄电池平稳充放电, 延长铅酸蓄电池使用寿命。碱性电池的电解液一般是由氢氧化钾KOH或者氢氧化钠NaOH(烧碱)组成。极板由于电池的结构不同而各异。如镉镍电池正极板是氢氧化镍Ni(OH)3,负极板是镉Cd;铁镍电池的正极板是氢氧化镍Ni(OH)3,负极板是铁Fe;银锌电池的正极板是过氧化银Ag2O3,负极板是锌Zn。
UPS、直流电源设备常用的蓄电池是铅酸蓄电池。传统的铅酸蓄电池是开口式结构,电池在使用过程中,有氢气和氧气以及酸雾逸出,不仅污染环境还具有危险性,维护时需要加水、加酸,已逐渐被市场淘汰。现在UPS供电系统中蓄电池大多采用阀控式密封铅酸(VRLA)蓄电池。阀控式铅酸蓄电池的主要优点是在充电时正极板上产生的氧气,通过再化合反应在负极板上还原成水,使用时在规定浮充寿命期内不必加水维护,所以又称为免维护铅酸蓄电池。可见,免维护只是与普通蓄电池相比,运行中免去了添加纯水或蒸馏水,调整电解液液面的项目,并非免去一切维护工作。
铅酸蓄电池只能工作在UT 至UOC 电压范围内( 以12 V 铅酸蓄电池为例, 只能工作在10. 8~ 14. 7 V之间) .相比之下,由于超级电容器组可深度放电, 其工作电压可以设定在较低范围,如该系统中设定超级电容器组的输出电压为4. 5 V.因此在弱光状态下, 太阳能板的输出电压会高于超级电容器组端电压,确保输出电能被超级电容器组吸收储存,再由升降压电路转换输出给铅酸蓄电池, 即实现了弱光充电功能。
JYHY1270 | 12 | 7 | 151 | 65 | 94 | 100 | 2.30 | F1 |
JYHY1280 | 12 | 8 | 151 | 65 | 94 | 100 | 2.50 | F2 |
JYHY1290 | 12 | 9 | 151 | 65 | 113 | 119 | 2.60 | F2 |
JYHY12100 | 12 | 10 | 151 | 97 | 94 | 100 | 3.60 | F2 |
JYHY12120 | 12 | 12 | 151 | 97 | 94 | 100 | 3.80 | F2 |
JYHY12150 | 12 | 15 | 180 | 76 | 167 | 167 | 5.60 | F3 |
JYHY12170 | 12 | 17 | 180 | 76 | 167 | 167 | 5.80 | F3 |
JYHY12180 | 12 | 18 | 180 | 76 | 167 | 167 | 5.85 | F3 |
JYHY12200 | 12 | 20 | 180 | 76 | 167 | 167 | 6.00 | F3 |
JYHY12240 | 12 | 24 | 175 | 166 | 125 | 125 | 8.00 | F3 |
JYHY12260 | 12 | 26 | 175 | 166 | 125 | 125 | 8.30 | F3 |
JYHY12280 | 12 | 28 | 175 | 166 | 125 | 125 | 9.00 | F3 |
JYHY12330 | 12 | 33 | 196 | 131 | 156 | 172 | 10.00 | F5-B |
JYHY12350 | 12 | 35 | 196 | 131 | 156 | 172 | 11.50 | F5-B |
JYHY12380 | 12 | 38 | 198 | 166 | 175 | 175 | 13.00 | F5-B |
JYHY12400 | 12 | 40 | 198 | 166 | 175 | 175 | 13.20 | F5-B |
JYHY12450 | 12 | 45 | 198 | 166 | 175 | 175 | 13.60 | F5-B |
JYHY12500 | 12 | 50 | 250 | 160 | 178 | 197 | 15.80 | F5-B |
蓄电池外壳材料我ABS工程塑料,在45℃环境下使用不应有变形现象。蓄电池外壳变形不是突发的,往往有一个过程,蓄电池在放电结束后,当充电器给蓄电池充电充到蓄电池容量的80%左右时,充电就进入高电压充电区,这时在正极板上先析出氧气。氧气通过AGM隔板中的微孔达到负极,在负极板上进行氧复合反应。实际使用中,应根据实际情况而定,参考平时运动频繁、里程情况、蓄电池厂提供的说明,以及配套的充电器性能等参数制定充电频率。按绝多数用户的情况,蓄电池以放电深度为50%-70% 时充一次电,这样可使蓄电池寿命达到效果,实际使用时可折算成骑行里程,在需要时充一次电。特别是充电多数在夜间进行,时间一般在 6 — 10 小时,平均8 小时左右,若是浅放电,其充电很快就会达到末期,会产生过充电,这时充电效率变低,析气副反应加大,加上频繁充电,失水增大甚至电池内部干涸,内阻加大,就会使蓄电池寿命因充电受到较大影响。
⑴氧气“通道”变得畅通,正极产生的氧气很容易通过“通道”达到负极;
⑵热容减小,在蓄电池中热容的是水,水损失后,蓄电池热容大大减小,产生的热量使蓄电池温度升高很快;
⑶由于失水后蓄电池中AGM隔板发生收缩现象,使之与负极板的附着力变差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过电池槽盒壁散热。如散热量小于发热量,即出现温度上升现象。