嘉峪关蜂窝斜管经销
斜管技术发展方向 随着社会的发展进步,污水处理保护环境越来越受到重视。采用技术性能可靠的曝气设备,是确保污水处理装置长期稳定运行的首要条件。由于鼓风曝气动力效率高,立体布气性能好,目前应用较为普遍。鼓风曝气的终端关键设备是斜管,因此可以说斜管的技术发展状况就代表了鼓风曝气的技术水平。由于曝气池相关的工艺理论计算,基本点就是曝气氧利用率,从而导致出现了对斜管的技术评价ZD集中在氧利用率,也导致出现了孔隙扩散——排气孔隙越来越细的现象。 5.1由于鼓风曝气动力效率高,立体布气性能好,目前应用较为普遍。鼓风曝气的终端关键设备是斜管,因此可以说斜管的技术发展状况就代表了鼓风曝气的技术水平。由于曝气池相关的工艺理论计算,基本点就是曝气氧利用率,从而导致出现了对斜管的技术评价ZD集中在氧利用率,也导致出现了偏重孔隙扩散——排气孔隙越来越细的现象。 5.2应当指出,孔隙扩散由固定孔隙到软性膜可变孔隙,技术水平是有所发展,孔隙扩散斜管在污水处理装置新安装投运初期会表现良好,但孔隙扩散技术可靠程度太低,现实运行情况不尽人意,这就不得不使人深思孔隙扩散中的技术合理性问题。 5.3任何一种设备,其功能效率必须要有合理的技术支持,这是一个很通常的技术原则,孔隙扩散完全不符合这样的技术原则。从理论上讲,设备的功能效率是越高越好,但这种功能效率如果没有合理的技术支持,则其肯定是不可靠的。斜管的“氧利用率”当然是要越高越好,但如果实现这种效率是以降低技术可靠性为代价,显然是有问题的。 5.4目前所谓具有“先进技术水平”的孔隙扩散,可以使斜管氧转移率达到30%以上,但无非是排气孔隙更加变细,进气除尘要求更加严格,阻力损耗更加增大;即以更加的技术不合理来实现的,其实际应用结果也只能是技术更加的不可靠。 5.5孔隙扩散不可能解决技术合理性的问题,这一点是十分清楚的。但为什么孔隙扩散现仍然具有一定的技术地位呢?一是以往斜管的充氧性能完全取决于排气孔隙的大小,大孔排气不能实现较高的氧转移率,形成工程上偏重于选择以微孔方式排气的斜管。二是曝气工艺工程设计基本点就是要求斜管要有较高的氧转移率。基于上述情况,使斜管孔隙扩散的应用处在满足了氧利用率的要求却难以满足技术合理要求的状态。 pd旋混斜管由于是利用气泡上浮动力进行扩散使气泡破碎变细,既可以达到较高的氧利用率又可以满足技术合理的要求,技术性能十分可靠。这也可以充分说明,只有脱离孔隙扩散的曝气技术才能够实现曝气技术先进合理。气的斜管。二是曝气工艺工程设计基本点就是要求斜管要有较高的氧转移率。从实际情况看,斜管孔隙扩散技术的应用是处在满足了氧利用率的要求却难以满足技术合理要求的状态,微孔斜管在应用存在氧利用率与技术可靠性的矛盾。 5.6 pd斜管由于是利用气泡上浮动力进行扩散使气泡破碎变细,既可以达到较高的氧利用率又可以满足技术合理的要求,技术性能十分可靠。这也可以充分说明,只有脱离孔隙扩散的曝气技术才能够实现曝气技术先进合理。
对斜管的学术探讨
近几个月来,我们邀请了一些专家对斜管这一话题进行了几次讨论,对技术性难关我们也取得了重大的突破下面逐一对斜管进行讨论: 1.斜管的水力负荷 大部分污水的水力特征是不易控制的因素。当地的生活方式和集流范围相结合形成了流向污水厂的流量变化形式。通常污水流量在一天内是变化的。高峰常出现在白天,低谷则出现在黑夜。变化幅度随城市大小而异。城市愈小,变化幅度愈大。在一般的设计中,高峰值约为平均流量的200%,Z低值约为平均流量的50%。污水流量还随季节变化,夏季流量大,冬季流量小。 在合流制管道系统中,雨水的流量大,足以破坏污水处理厂的正常运行。若要保证出水的质量,有必要将过大的流量转移到雨水调节池中去,当流量回跌到Z大允许流量之下时,再将调节池中的雨水在控制状态下抽送到处理构筑物。雨水的贮存增加了处理系统的复杂性。在分流制系统中,雨水的渗入也会引起运行问题。 很多处理厂用泵来提升污水进入处理厂,由于没有选好泵产生了很多问题。小厂往往只有二个人流泵,一个运行,一个备用。以前通常按每日高峰时的流量选用,该时的流量为平均流量的2~3倍,这样,活性污泥法系统必须承受周期性的冲击负荷,对运行十分不利。应该选用同样型号的几台泵,并和泵前集水井的容积相配合,使进入的变化较大的流量,通过井和泵的配合调蓄后,得到相对较稳定的流量。有时专门设置调节池平衡一日内的流量变化。近年来,螺旋泵再次显示了可提供可变的流量而无需专门设备的优点,但问题是水头相对较小。 水力负荷的变化影响活性污泥法系统的曝气池和二次沉淀池。当流量增加时,污水在曝气池内的停留时间缩短,影响出水质量,同时影响曝气池的水位。若为机械表面曝气机,由于水位的变化,它的运行就变得不稳定。水力影响的主要部分是二次沉淀池。 2.斜管的有机负荷 曝气区容积的计算,早以经验的曝气时间作为主要的设计参数。有了曝气时间(即停留时间),再乘上设计流量,就可得到曝气池的容积。现在则常以污泥的有机负荷率N作为设计参数。 设计中要思考的主要问题是如何确定污泥负荷率和MLSS的设计值。从公式可知,这两个设计值采用得大一些,曝气池所需的体积可以小一些。污泥有机负荷率的大小影响处理效率。根据经验,当采用活性污泥法作为完全处理时,设计的污泥负荷率一般不大于0.5kg(BOD5)/kg(MLSS)?d如果要求氮素转入硝化阶段,一般采用0.3kg(BOD5)/kg(MLSS)?d,通常称为常负荷。有时为了减小曝气池的容积,可以采用高负荷,即污泥负荷率采用1以上。采用高的污泥负荷率虽可减小曝气池的容积,但出水水质要降低,而且使剩余污泥量增多,增加了污泥处置的费用和困难,同时,整个处理系统较不耐冲击,造成运行中的困难。因此,近年来,很多国家的科技人员不主张采用高负荷系统。有时为避免剩余污泥处置上的困难和要求污水处理系统的稳定可靠,可以采用低的污泥负荷率(<0.1),把曝气池建得很大,曝气池中的污泥浓度维持较高,可以基本上没有剩余活性污泥,这就是延时曝气法。(图6-25)显示了污泥负荷与BOD5,去除率,污泥龄及污泥产量的关系。