denison丹尼逊液压泵在工作时,如果液压油吸入管道的阻力过大,此时,液压油来不及充满泵的吸油腔,造成吸油腔内局部真空,形成负压.如果这个压力恰好达到了油的空气分离压力时,原来溶解在油液内的空气便会大量析出,形成游离状态的气泡.随着泵的动转,这种带有气泡的油液转入高压区,此时气泡由于受到高压而缩小,破裂和消失,形成很高的局部高频压力冲击台湾FURNAN福南叶片泵VHI-F-40-A2
3)denison丹尼逊液压泵内的机械振动
低压变量叶片泵
TCVP-F8,TCVP-F12,TCVP-F15,TCVP-F20
TCVP-F8-A4,TCVP-F8-A3,TCVP-F8-A2,TCVP-F8-A1
TCVP-F12-A3,TCVP-F12-A2,TCVP-F12-A1,TCVP-F12-A4,
TCVP-F15-A3,TCVP-F15-A2,TCVP-F15-A1,TCVP-F15-A4,
TCVP-F20-A3,TCVP-F20-A2,TCVP-F20-A1,TCVP-F20-A4,
TCVP-F23,TCVP-F26,TCVP-F30,TCVP-F40
denison丹尼逊液压泵是由很多的零件构件的,由于零件的制造误差,装配不当都有可能引起液压系统的振动和噪声3、液压阀的振动和噪声液压阀产生的噪声,因阀的种类,使用条件等具体情况不同而有所不同。按其发生的原因大致可分为机械声和流体声两大类。
1)机械声
大部分的液压阀都由阀芯,阀体,调控零件,紧固件,密封件等几部分组成,他是通过外力使阀芯产生运动,阀芯运动至相应位置使液流发生改变,满足工作要求。在这一过程中,阀内可动零件的机械接触产生噪声。
2)流体声
由于液压阀在进行节流,换向,溢流时,使阀体内液流的流量,方向以及背压发生种种变化,导致阀件及管道的壁面产生振动,从而产生噪声。按其产生压力振动的原因又可分为气穴声,流动声,液压冲击声和震荡声。管路的振动和噪声这主要是由于泵,阀等液压元件的振动在管路上相互作用引起的。研究表明,当管路的长度恰好等于振动压力波长一半的整数倍时,管路会产生强烈的高频噪声。
此外,外部震源也可能引起管路共振;而当管路的截面积突然变化(急剧扩大和缩小或急转弯)时,都会使其中的液流发生变化,易产生紊流而发出噪声。
防止油中混入空气液压系统往往在运转开始的一段时间内噪声较小,一定时间后,噪声增大,若此时观察油箱中的液压油,可发现液压油变为了黄色,这主要是由于油中混入微小气泡,故此变色。对于这种情况主要从二个方面采取措施,一是从根本上解决,防止空气混入。二是尽除混入油体的空气。
具体方法为:
1泵的吸油管接头密封要严,防止吸入空气;
2合理设计油箱。防止液压阀产生空穴现象液压阀的空穴现象的产生,主要作到使泵的吸油阻力尽量减小。常用的措施包括,采用直径较大的吸油管,大容量的吸油滤器,同时要避免滤油器堵塞;泵的吸油高度应尽量变小。
防止管道内紊流和旋流的产生在对液压系统管路进行设计时,管道截面应尽量避免突然扩大或收缩;如采用弯管,其曲率半径应为管道直径五倍以上,这些措施都可有效的防止管路内紊流和旋流的产生。
采用蓄能器或消声器吸收管道内的压力脉动
管道内的压力脉动是系统产生振动和噪声主要原因。在液压回路中设置蓄能器,可以有效地吸收振动,而在发生振动部位附近设置消振器也可有效地减少系统振动。
TCVP-F23-A4,TCVP-F23-A3,TCVP-F23-A2,TCVP-F23-A1,
TCVP-F26-A4,TCVP-F26-A3,TCVP-F26-A2,TCVP-F26-A1,
TCVP-F30-A3,TCVP-F30-A2,TCVP-F30-A1,TCVP-F30-A4,
TCVP-F40-A3,TCVP-F40-A2,TCVP-F40-A1,TCVP-F40-A4
避免系统发生共振
在液压系统中常会发生振源(如denison丹尼逊液压泵,液压马达,电机等)引起底板,管道等部位产生共振;或是泵,阀等道等元件的共振而造成较大的噪声。对于这种现象,可通过改变管道的长度来改变管道的固有振动频率,以及对一些阀的安装位置进行改变措施来消除。
隔离振动台湾FURNAN福南叶片泵VHI-F-40-A2
对于液压系统中的主要振源(泵,电机)常采用加装橡皮垫或弹簧等措施,使之与底板(或油箱)隔离,也可采用将振源装在底板上与整个系统隔离的办法,这些都可收到良好的减振降噪的效果。