产品简介
HDJZC型计量装置综合测试系统是为用电检查管理、计量所等部门的用电稽查工作需要,开发研制的产品。该产品为现场诊断10KV及以下配电系统用户电能计量准确性,杜绝电量非法流失,提供了多功能测试手段。为安全用电、合理计量提供了可靠保证,为防窃电工作提供快捷、可靠的测试依据。
构成本测试仪有两部分组成,即主机部分和分机部分,基本配置:主机1台,分机2台(最多6台)。设备采用高精度、宽量限电压互感器和精密钳型电流互感器,六路24位高速A/D对三相电压、三相电流同步采样,并利用数字技术进行精度补偿设计,档位无需切换,全量程满足精度要求。
HDJZC型计量装置综合测试系统采用宽温液晶及工业级器件,保证设备适应不同的季节和天气,测量准确;采用超宽量限电源,正常工作输入电压为40~450V,输入线电压可达660V历时30分钟无损坏,防止误接线造成对仪器的损坏。采用进口无线通讯模块,误码率低,功耗小,通讯速度快。
二:技术参数
2.1主机性能指标
1 功耗:小于8VA;
2 工作电源:高容量镍氢充电电池供电,一次充电可连续工作8小时以上;
3 主机、分机之间无线通讯距离:空旷地带保证10km,城区保证2km内可靠通讯
4 工作温度:-20~50℃
2.2分机性能指标
1 电压测量范围:AC 40~450V
2 钳型电流互感器档位:5A、25A 、1000A
3 频率测量范围:45~55Hz
4 相位测量范围:-180~+180°
5 整机准确度等级:0.5级(0.3级)
6 工作电源:AC 30~450V,取自测量回路;
2.3主机功能
1 在不停电、不打开高压计量箱、不与高压线路接触的的条件下,接受高压侧电能表脉冲,按照操作员所设定的测量周期向分机发出起始及终了指令,并根据主机计算的高压测算定电能及所传送的低压侧实测电能计算高供高计配电计量回路综合误差。
2 现场打印高供高计综合误差和各配电变压器二次侧电参量。
3 可存储500块表的检测数据,包括综合误差各分机传送的电参量。
4 配备计算机数据通讯管理软件,提供现场检测数据的存储、查询、打印报表等功能。
2.4分机功能
1 可单独使用,在不停电,不改变计量回路接线的条件下,检测各低压计量装置综合误差(含接线、电能表误差、CT变比及角差引起的误差)
2 测量配电变压器二次侧的电压、CT一次电流和二次电流、有功功率、相位角、功率因数及频率;
3 直观显示配电变压器二次侧三相电流、电压的向量图,并提示计量装置接线错误类型;
4 同时测量低压计量装置的三相CT变比、极性、变比误差和角差(定性测量);
5 检测计量装置的电能表误差;
6 校核电能表常数;
7 可根据变压器型号自动加入变压器的空载损耗和负载损耗;
8 检测低压计量装置分相综合误差或电能表误差;
9 在只使用小量程钳型电流互感器情况下,分机向主机传送算定的CT一次电能值,检测包括CT在内的综合误差;
10 可存储200块表的检测数据,包括电表信息、电压、电流、相位、功率、功率因数、向量图等;
11 可选配计算机数据通讯管理软件,提供现场检测数据的存储、查询、打印报表等功能。
注:1台主机图片,2台分机图片;主机不加钳子,每台分机加3只大钳子和3只小钳子。
更多产品咨询请访问武汉华顶电力设备有限公司
悬浮电位缺陷
当被测设备存在悬浮电位缺陷时,在高压电场作用下会产生局部放电信号。局部放电信号的产生与施加在其两端的电压幅值具有明显关联性,在放电谱图中则表现出典型的50Hz相关性及100Hz相关性,即存在明显的相位聚集效应,且100Hz相关性大于50Hz相关性。此外,在特征指数检测模式下,放电次数累积谱图波峰位于整数特征值1处。表4-9为悬浮电位缺陷超声波检测典型图谱。
表4-9 悬浮电位缺陷超声波检测典型图谱
检测模式 | 连续检测模式 | 相位检测模式 |
典型谱图 |
|
|
谱图特征 | 1)有效值及周期峰值较背景值明显偏大; 2)频率成分1、频率成分2特征明显,且频率成分1大于频率成分2。 | 具有明显的相位聚集相应,在一个工频周期内表现为两簇,即“双峰”。 |
| 时域波形检测模式 | 特征指数检测模式 |
典型谱图 |
|
|
谱图特征 | 有规则脉冲信号,一个工频周期内出现两簇,两簇大小相当。 | 有明显规律,峰值聚集在整数特征值处,且特征值1大于特征值2 |
3 自由金属颗粒
当被测设备内部存在自由金属微粒缺陷时,在高压电场作用下,金属微粒因携带电荷会受到电动力的作用,当电动力大于重力时,金属微粒即会在设备内部移动或跳动。但是,与悬浮电位缺陷、电晕缺陷不同,自由金属微粒产生的超声波信号主要由运动过程中与设备外壳的碰撞引起,而与放电关联较小。由于金属微粒与外壳的碰撞取决与金属微粒的跳跃高度,其南京市计量装置综合测试系统出厂价南京市计量装置综合测试系统出厂价碰撞时间具有一定随机性,因此在开展局部放电超声波检测时,该类缺陷的相位特征不是很明显,即50Hz、100Hz频率成分较小。但是,由于自由金属微粒通过直接碰撞产生超声波信号,因此其信号有效值及周期峰值往往较大。此外,在时域波形检测模式下,检测谱图中可见明显脉冲信号,但信号的周期性不明显。表4-9为自由金属颗粒缺陷超声波检测典型图谱。虽然自由金属微粒缺陷无明显相位聚集效应。但是,当统计自由金属微粒与设备外壳的碰撞次数与时间的关系时,却可发现明显的谱图特征。该谱图定义为“飞行图”,通过部分局部放电超声波检测仪提供的“脉冲检测模式”即可观察自由金属微粒与外壳碰撞的“飞行图”,进而判断设备内部是否存在自由金属微粒缺陷。图4-14为自由金属微粒缺陷的超声波检测飞行图,由图可见