:产品概述
避雷器用监测器已经普及我国各大小电厂电站,为避雷器的可靠运行提供了重要数据。由于密封性能的差异,监测器在运行的过程中可能进入水分和潮气,使内部器件锈蚀,或其他原因造成监测器计数器不能正常动作,泄漏电流指示不准确。所以《规程》规定应每年都对避雷器监测器进行检查。运行中的避雷器监测器显示异常数据时,工作人员则需要进行相应检测找出故障原因。其中当监测器显示电流数值比正常明显偏大时,一般为避雷器持续电流增大(包括阻性电流增大、外瓷套污秽电流增大等),或者是监测器测量部分出现故障;当监测器显示电流数值比正常明显偏小时,一般为绝缘底座漏电或者监测器本身故障所致。可见只要监测器数据异常,监测器本身就是ZD的怀疑对象。一般工作人员首先会对监测器进行检测,当确定监测器良好后才开始检测避雷器及查找其它问题。
目前,市场上监测器品种繁多,质量也良莠不齐,而且生产厂家大多不提供监测器的检测设备,而《规程》上提供的简易检测手段现场制作十分困难,使用操作不方便也不安全。所以如何判断监测器的好坏也就成了现场工作人员非常头痛的问题。针对上述现状,我公司根据多年的现场经验总结研发了集监测器电流校验、监测器动作测试和电流测量等多种功能于一体的多功能高精度测试仪器HDYZ-102避雷器监测器测试仪,仪器为一体化结构,内置超大容量充电电池,操作简单,便于携带。
二:仪器主特点:
1.全触控超大液晶显示
操作简单,仪器配备了高端的全触控液晶显示屏,超大显示界面所有操作步骤中文菜单显示,每一步都非常清楚,操作人员不需要额外的专业培训就能使用。轻轻触摸一下就能完成整个过程的测量,是目前非常理想的智能型测量设备。
2.语音智能
该仪器内部配备了语音提示功能,超大液晶全中文显示,再配合智能语音提示,使仪器智能化程度更高
3.全自动模拟雷击
由于雷击过程非常短暂的,而传统模拟雷击均为手动控制,其输出电流的控制根本无法精确的控制在很短暂的时间内完成。本仪器通过内部ZY处理器全自动控制模拟输出电路可以精确控制其冲击电流的冲击时间,从而更加真实的还原出雷击现象,对于监测器动作的检测数据更有实际意义。
4.功能齐全,性能强大
本仪器具备监视器电流校验、监视器动作测试和电流测量等多种测试功能,性能强大、测试精度高
5.一体化结构,体积小、重量轻
仪器内部高度集成化,为试验提供了一种最为简单便捷的试验手段。
6.微型精密打印机
内置微型精密热敏打印机,可非常方便的打印测试结果数据。
7.超大容量电池,简单便携
仪器内置超大容量锂电池,一次充电可连续工作几十个小时,完全省去了工作现场寻找工作电源的麻烦。
三:主要技术参数
1 | 使用条件 | -20℃ ~ 50℃ | RH<80% |
2 | 充电电源 | AC 220V±10% | 允许发电机 |
3 | 锂电池 | 内置超大容量里电池 | 待机72小时左右 |
模拟雷击1000次以上 |
4 | 打印机 | 内置精密热敏打印机,可方便打印测试结果数据 |
5 | 电流输出 | 范 围 | 0~10mA |
分辨率 | 0.001mA |
精 度 | 1% |
6 | 动作次数 | 0~100次 |
7 | 技术依据标准 | 1、GB11032-2000《交流无间隙金属氧化物避雷器》 2、JB/T10492-2004《交流无间隙金属氧化物避雷器用监测器》 3、GB50150-2006《电气装置安装工程电力设备交接试验标准》 4、Q/GDW168-2008《输变电设备状态检修试验规程》 |
8 | 主机外型尺寸 | 320(L)×270(W)×140(H) |
9 | 重 量 | 3.9Kg |
更多产品详情请访问武汉华顶电力设备有限公司
试验电压所延续,概念是系统上有过电压时所激发的局部放电量不会由长期工作电压所延续。这一方法是使变压器或互感器在Um/√3长期工作电压下无局部放电量,以保证变压器能安全运行,使局部放电起始电压与局部放电熄灭电压都能高于Um/√3。
因此,变压器的绝缘结构设计、绝缘件加工与工艺处理、带电与接地电极表面场强、绝缘介质的承受场强等都要使局部放电量小于规定值来考虑。不能以主、纵绝缘是否放电作为依据。
以工频耐压作为预激磁电压时,局部放电试验电压的持续时间一般较短,约1~5分钟。延长局部放电试验电压持续时间对绝缘是较为严峻,有时会引起破坏性损坏。以Um作为预激磁电压时局部放电试验电压持续时间较长,标准要求为1小时,能承受多长时间与绝缘结构的伏秒特性有关。
局部放电量一般与带电与接地电极表面的场强有关,与电源的频率无关。试验地点的背境噪声要小,电源的局部放电量要隔离。
从试验顺序而言,局部放电试验应放在所有绝缘试验之后,从试验类型而言。长时感应带局部放电试验或短时感应带局部放电试验之一要作为变压器出厂试验。从变压器的Um等级而言,现有标准,Um≥252kV起要作局部放电试验,正在修订的IEC76-3,Um≥126kV起要作局部放电试验。
从具体铁心结构而言,采用三相五柱铁心结构的变压器,在作局部放电试验时不能使上下铁轭内磁通密度饱和。从绝缘结构而言,应能承受三相法作局部放电试验的要求。
2)截波冲击试验
一般是波尾截断的波形,可用IEC标准棒状间隙截断,也可用多极点火截断装置截断。用多极点火截断装置截断时,可获得较准的截断时间,示伤波的截断时间差异大于0.15μS,截波冲击试验结果就有问题。用棒状间隙截断就不易从截断时间的差异来判断是否能通过试验。
截波试验电压为110%全波试验电压时,如截断时间小于等于3μS时,两者强度相同。与GIS联的变压器必须要考虑截波试验。
截波试验必须与全波试验交替进行。一般采用负极性截波。
3)全波冲击试验
正在修订的IEC76--3标准,已将全波冲击试验列为Um≥126kV变压器的出厂试验项目。要进行突发短路试验(特殊试验项目之一)的变压器,要在短路试验后作全波冲击试验。
4)操作波试验HDYZ-102避雷器监测器测试仪型号多样HDYZ-102避雷器监测器测试仪型号多样
正在修订的IEC76-3标准,已将操作波试验列为Um≥252kV变压器的出厂试验项目。由于不作操作波试验的Um=252kV变压器的相间绝缘决定于全波冲击试验或长时感应带局部放电测量的试验。要进行操作波试验时,外部空气间隙的相间绝缘尺寸就要由操作波试验电压决定,可能要比不考核操作波试验时外部空气间隙要放大。
从以上分析可知,按新IEC76-3标准来考核变压器的绝缘性能时,很多设计原则要重新考虑,工艺加工方案要相应更改,试验工作量要大为增加。
新IEC76-3标准是总结国内外经验而进行修订的,贯彻这一标准的时间不会太久了,修订主要内容已于1996年7月30日~8月1日的"沈阳IEC TC14"会议上讨论了,工作组根据讨论情况将作调整