测量原理:
局放仪运用的原理是脉冲电流法原理,即产生一次局部放电时,试品Cx两端产生一个瞬时电压变化Δu,此时若经过电Ck耦合到一检测阻抗Zd上,回路就会产生一脉冲电流I,将脉冲电流经检测阻抗产生的脉冲电压信息,予以检测、放大和显示等处理,就可以测定局部放电的一些基本参量(主要是放电量q)。在这里需要指出的是,试品内部实际的局部放电量是无法测量的,因为试品内部的局部放电脉冲的传输路径和方向是极其复杂的,因此我们只有通过对比法来检测试品的视在放电电荷,即在测试之前先在试品两端注入一定的电量,调节放大倍数来建立标尺,然后将在实际电压下收到的试品内部的局部放电脉冲和标尺进行对比,以此来得到试品的视在放电电荷。
表征参数
局部放电是比较复杂的物理现象,必须通过多种表征参数才能全面的描绘其状态,同时局部放电对绝缘破坏的机理也是很复杂的,也需要通过不同的参数来评定它对绝缘的损害,目前我们只关心两个基本参数。
视在放电电荷——在绝缘体中发生局部放电时,绝缘体上施加电压的两端出现的脉动电荷称之为视在放电电荷,单位用皮库(pc)表示,通常以稳定出现的zui大视在放电电荷作为该试品的放电量。
放电重复率——在测量时间内每秒中出现的放电次数的平均值称为放电重复率,单位为次/秒,放电重复率越高,对绝缘的损害越大。
局放测试的试验系统接线。
在了解了局部放电的基本理论之后,在本章我们的ZD转向实际操作,我们先介绍局部放电测试中常用的三种接法,随后我们再介绍整个系统的接线电路,zui后我们再分别介绍几种典型的试品的试验线路。
局部放电测试电路的三种基本接法及优缺点。
标准试验电路,又称并联法。适合于必须接地的试品。
其缺点是高压引线对地杂散电容并联在 CX上,会降低测试灵敏度。
接法的串联法,其要求试品低压端对地浮置。
其优点是变压器入口电容、高压线对地杂散电容与耦合电容CK并联,有利于提高试验灵敏度。缺点是试样损坏时会损坏输入单元。
平衡法试验电路:要求两个试品相接近,至少电容量为同一数量级其优点是外干扰强烈的情况下,可取得较好YZ干扰的效果,并可消除变压器杂散电容的影响,而且可做大电容试验。缺点是须要两个相似的试品,且当产生放电时,需设法判别是哪个试品放电。
值得提出的是:由于现场试验条件的限制(找到两个相似的试品且要保证一个试品无放电不太容易),所以在现场平衡法比较难实现,另外,由于采用串联法时,如果试品击穿,将会对设备造成比较大的损害,所以出于对设备保护的想法,在现场试验时一般采用并联法。
采用并联法的整个系统的接线原理图。
该系统采用脉冲电流法检测高压试品的局部放电量,由控制台控制调压器和变压器在试品的高压端产生测试局放所需的预加电压和测试电压,通过无局放藕合电容器和检测阻抗将局部放电信号取出并送至局部放电检测仪显示并判断和测量。系统中的高压电阻为了防止在测试过程中试品击穿而损坏其他设备,两个电源滤波器是将电源的干扰和整个测试系统分开,降低整个测试系统的背景干扰。
根据上述原理图可以看出,局部放电测试的灵敏度和准确度和整个系统密切相关,要想顺利和准确的进行局部放电测试,就必须将整个系统考滤周到,包括系统的参数选取和连接方式。另外,在现场试验时,由于是验证性试验,高压限流电阻可以省掉。
几种典型试品的接线原理图。
(1)电流互感器的局放测试接线原理图
a电流互感器接线
(2)电压互感器的局放测试接线原理图
A.工频加压方式接线原理图
B.高频加压方式接线原理图
为了防止电压互感器在工频电压下产生大的励磁电流而损坏,高压电压互感器一般采取自激励的加压方式。在电压互感器的低压侧加一倍频电源,在电压互感器的高压端感应出高压来进行局部放电实验。这就是通常所说的三倍频实验。其接线原理图如下:
(3)高压电容器.绝缘子的局放测试接线原理图
(4) 发电机的局放测试接线原理图
(5)变压器的局部放电测试接线原理图
我们仅仅是在原理性的总结了几种典型试品的接线原理图,至于各种试品的加压方式和加压值的多少,我们在做试验的时侯要严格遵守每种试品的出厂检验标准或交接检验标准。
特点:
1.彩色显示器,双色显示波形,更清晰直观;
2.可锁定波形,更方便仔细查看放电波形细节;
3.自动测量并显示试验电源时基频率,无需手动切换;
4.配备VGA接口,可外接大尺寸显示器;
5.与示波管相比寿命更长。
6.具有波形锁定、打印试验报告功能
本仪器检测灵敏度高,试样电容覆盖范围大,适用试品范围广,输入单元(检测阻抗)配备齐全,频带组合多(九种)。仪器经适当定标后能直读放电脉冲的放电量。
本仪器是电力部门、制造厂家和科研单位等广泛使用的局部放电测试仪器。
结构说明
本仪器为标准机箱结构,仪器分前面板及后面板两部分,各调节元件的位置及位置和功能见下图说明。
1、4:长按改变门窗的位置
2、3:长按改变门窗的宽度
5:时钟设置按钮
6:按9号键锁定后再按此键,即可打印试验报告
7:分压比设置按钮
8:门开关,重复按可选择左右门
9:波形锁定按键
10:椭圆旋转按钮
11:显示方式按钮
12:取消按钮
A、B、C通道选择旋钮与后面板A、B、C测量通道相对应
备注: 如需数据导出,步骤如下:
(1)在电脑上安装好RS232通用串口线驱动。(驱动盘里有安装介绍)及局放试验报告编辑器软件。
(2)将串口线和局放仪后面的数据接口连接好。
(3)将需要保存的波形锁定然后点击 局放试验报告编辑器
(4)点击Start键生成锁定后的数据,然后点击测试报告如下图所示:
(5)点击测试报告后则会出现局放试验报告编辑器可以根据需要填写上面的内容。
(6)填写好表格后点击生成报告数据会以Word文档的形式出现,再将数据保存至电脑,如下图所示:
操作说明
1、试验准备:将机器后面板的三个开关都置于“关”的状态
(1)检查试验场地的接地情况,将本仪器后部的接地螺栓用粗铜线(用编制铜带)与试验场地的接地妥善相接,输入单元的接地短路片也要妥善接地。
(2)根椐试品电容Ca,藕合电容Ck的大小,选取合适序号的输入单元(表一),表一中调谐电容量是指从输入单元初级绕组两端看到的电容(按Cx和Ck的串联值粗略估算)。
输入单元应尽量靠近被测试品,输入单元插座经8米长电缆与后面板上输入插座相接。
(3)试品接入输入单元的方法主要有以下几种:
图中:Ca——试品 Ck——藕合电容 Z——阻塞阻抗
R3、C3、R4、C4——桥式接法中平衡调节阻抗。
(4)在高压端接上电压表电阻或电容分压器,其输出经测量电缆接到后面板试验电压输入插座30。
(5)在未加试验电压的情况下,将JF-2006校正脉冲发生器的输出接试品两端。
2、使用步骤
(1)开机准备:将时基显示方式置于“椭圆”。
(2)放电量的校正:按图接好线后,在未加试验电压之前
用LJF-2006校正脉冲发生器予以校正。
注意:方波测量盒应尽量靠近试品的高压端。红端子引线接高压端。
然后调节放大器增益调节,使该注入脉冲高度适当(示波屏上高度2cm以下),使数字表读数值与注入的已知电量相符。调定后放大器细调旋钮的位置不能再改变,需保持与校正时相同。
校正完成后必须去掉校正方波发生器与试验回路的连接。
(3)测试操作:
接通高压试验回路电源,零标开关至“通”位置,缓缓升高试验电压,椭圆上出现两个零标脉冲。
旋转“椭圆旋转”开关,使椭圆旋转到预期的放电处于zui有利于观测的位置,连续升高电压,注意*次出现的持续放电,当放电量超过规定的zui低值时的电压即为局部放电起始电压。
在规定的试验电压下,观测到放电脉冲信号后,调节放大器粗调开关(注意:细调旋钮的位置不能再变动),使显示屏上放电脉冲高度在0.2~2cm之间(数字电压表上的PC读数有效数字不能超过120.0),超过120至需要降低增益档测量。
注意:
本仪器使用数字表显示放电量,其满度值定为100超过该值即为过载,不能保证精度,超过该值需拨动增益粗调开关转换到低增益档。
试验过程中常会发现有各种干扰,对于固定相位的干扰,可用时间窗装置来避开。合上开关用一个或两个时间窗,并调节门宽位置来改变椭圆上加亮区域(黄色)的宽度和位置,使其避开干扰脉冲之处,用时间窗装置可以分别测量产生于两个半波内的放电量。
三倍频感应法的试验步骤:将高频电源接入仪器后面板的高频电源插座,并将电源开关置于“开”的位子,其他试验方式同前试验。
打印报告:完成试验后,若需要记录试验数据,只需要按锁定按键,然后按打印按钮就可以直接打印试验数据报告。
抗干扰措施和局部放电图谱简介
对于局部放电实验我们zui怕的就是干扰,下面简单介绍一下实验中可能遇到的干扰以及抗干扰的方法:
测量的干扰分类
干扰有来自电网的和来自空间的。按表现形式分又分为固定的和移动的。主要的干扰源有以下一些:
①悬浮电位物体放电,通过对地杂散电容耦合
②外部*电晕
③可控硅元件在邻近运行
④继电器,接触器,辉光管等物品
⑤接触不良
⑥无线电干扰
⑦荧光灯干扰
⑧电动机干扰
⑨中高频工业设备
(二)抗干扰方法
采用带调压器,隔离变压器和滤波器的控制电源
设置屏蔽室,可只屏蔽试验回路部分
可靠的单点接地,将试验回路系统设计成单点接地结构,接地电阻要小,接地点要与一般试验室的地网及电力网中线分开。
采用高压滤波器
用平衡法或桥式试验电路
利用时间窗,使固定相位干扰处于亮窗之外
采用较窄频带,或用频带躲开干扰大的频率范围
在高压端加装高压屏蔽罩或半导体橡胶帽以防电晕干扰
试验电路远离周围物体,尤其是悬浮的金属固体!
(三)初做实验者对波形辨认还是有一定困难的,下面就简单介绍一 放电类型和干扰的初步辩认:
1. 典型的内部气泡放电的波形特点:(图 5—01)
A.放电主要显示在试验电压由零升到峰值的两个椭圆象限内。
B.在起始电压Ui时,放电通常发生在峰值附近,试验电压超过Ui时,放电向零相位延伸。
C.两个相反半周上放电次数和幅值大致相同(zui大相差至3:1)。
D.放电波形可辩。
E.q与试验电压关系不大,但放电重复率n随试验电压上升而加大。
F.局部放电起始电压Ui和熄灭电压Ue基本相等。
G.放电量q与时间关系不大。
H.如果放电量随试验电压上升而增大,并且放电波形变得模糊不可分辨,则往往是介质内含有多种大小气泡,或是介质表面放电。如果除了上述情况,而且放电幅值随加压时间而迅速增长(可达100倍或更多),则往往是绝缘液体中的气泡放电,典型例子是油浸纸电容器的放电。
(图 5—01)
2. 金属与介质间气泡的放电波形特点:
正半周有许多幅值小的放电,负半周有很少幅值大的放电。幅值相差可达10﹕1,其他同上。
典型例子:绝缘与导体粘附不良的聚乙烯电缆的放电。q与试验电压关系不大。(图 5—02)
如果随试验电压升高,放电幅值也增大,而且放电波形变得模糊,则往往是含有不同大小多个气泡,或是外露的金属与介质表面之间出现的表面放电。(图 5—03)
(四)下面介绍一些主要视为干扰或非正常放电的情况:
(1)悬浮电位物体放电波形特点:
在电压峰值前的正负半周两个象限里出现幅值。脉冲数和位置均相同,成对出现。放电可移动,但它们间的相互间隔不变,电压升高时,根数增加,间隔缩小,但幅值不变。有时电压升到一定值时会消失,但降至此值又重新出现。
原因:金属间的间隙产生的放电,间隙可能是地面上两个独立的金属体间(通过杂散电容耦合)也可能在样品内,例如屏蔽松散。
(图 5—04)
(2)外部*电晕放电波形特点:
起始放电仅出现在试验电压的一个半周上,并对称地分布在峰值两侧。试验电压升高时,放电脉冲数急剧增加,但幅值不变,并向两侧伸展。
原因:空气中高压*或边缘放电。如果放电出现在负半周,表示*处于高压,如果放电出现在正半周则*处于地电位。
(图5—05)
(3)液体介质中的*电晕放电波形特点:
(图 5—06)
放电出现在两个半周上,对称地分布在峰值两侧。每一组放电均为等间隔,但一组幅值较大的放电先出现,随试验电压升高而幅值增大,不一定等幅值;一组幅值小的放电幅值相等,并且不随电压变化。
原因:绝缘液体中*或边缘放电。如一组大的放电出现在正半周,则*处于高压;如出现在负半周,则*地电位。
(4)接触不良的干扰图形。
(图 5—07)
波形特点:对称地分布在实验电压零点两侧,幅值大致不变,但在实验电压峰值附近下降为零。波形粗糙不清晰,低电压下即出现。电压升高时,幅值缓慢增加,有时在电压达到一定值后会完全消失。
原因:实验回路中金属与金属不良接触的连接点;塑料电缆屏蔽层半导体粒子的不良接触;电容器铝箔的插接片等(可将电容器充电然后短路来消除)。
(5)可控硅元件的干扰图形。
(图5—08)
波形特点:位置固定,每只元件产生一个独立讯号。电路接通,电磁耦合效应增强时讯号幅值增加,试验调压时,该脉冲讯号会发生高频波形展宽,从而占位增加。
原因:邻近有可控硅元件在运行。
(6)继电器、接触器、辉光管等动作的干扰。
(图 5—09)
波形特点:分布不规则或间断出现,同试验电压无关。
原因:热继电器、接触器和各种火花试验器及有火花放电的记录器动作时产生。
(7)荧光灯的干扰图形。
(图5—10)
波形特点:栏栅状,幅值大致相同的脉冲,伴有正负半波对称出现的两簇脉冲组。
原因:荧光灯照明
(8)无线电干扰的干扰图形。
(图5—11)
波形特点:幅值有调制的高频正弦波,同试验电压无关。
原因:无线、广播话筒、载波通讯等。
(9)电动机干扰的干扰图形(图5—12)
(图5—12)
波形特点:放电波形沿椭圆基线均匀分布,每个单个讯号呈“山”字形。
原因:带换向器的电动机,如电扇、电吹风运转时的干扰。
(10)中高频工业设备的干扰图形。
(图5—13)
波形特点:连续发生,仅出现在电源波形的半周内。
原因:感应加热装置和频率接近检测频率的超声波发生器等。
(11)铁芯磁饱和谐波的干扰图形(图5—14)
(图5—14)
波形特点:较低频率的谐波振荡,出现在两个半周上,幅值随试验电压升高而增大,不加电压时消失,有重现性。
原因:试验系统各种铁芯设备(试验变压器、滤波电抗器、隔离变压器等)磁饱和产生的谐振。
(12)电极在电场方向机械移动的干扰图形。
(图 5—15)
波形特点:仅在试验电压的半周(正或负)上出现的与峰值对称的两个放电响应,幅值相等,而脉冲方向相反,起始电压时两个脉冲在峰值处靠得很近,电压升高时逐渐分开,并可能产生新的脉冲讯号对。
原因:电极的部分(尤其是金属箔电极)在电场作用下运动。
(14)漏电痕迹和树枝放电
波形特点:放电讯号波形与一般典型图象均不符合,波形不规则不确定。
原因:玷污了的绝缘上漏电或绝缘局部过热而致的碳化痕迹或树枝通道。
在放电测试中必须保证测试回路中其它元件(试验变压器、阻塞线圈、耦合电容器、电压表电阻等)均不放电,常用的办法是用与试品电容数量级相同的无放电电容或绝缘结构取代试品试验,看看有无放电。
了解了各种放电类型的波形特征,来源以及识别干扰后就可按具体情况采取措施排除干扰和正确地进行放电测量了。
扬州多功能局部放电检测仪电力系统
技术指标
◆ 检测的电容范围:6PF~250 uF
◆ 检测灵敏度
◆ 椭圆扫描时基:50Hz、100 Hz、150 Hz、200 Hz、400 Hz
◆ 椭圆旋转以30 º为一档,可作120 º旋转
◆ 放大器:3db低端频率fL:10k Hz、20 k Hz、40 k Hz任选:
◆ 高端:80 k Hz、200 k Hz、300 k Hz任选。
◆ 增益调节范围<120db。档间增益差20±ldb,
◆ 正负脉冲响应不对称性<]dB
◆ 时间窗:窗宽15º~150º,窗位置可旋转Oº~170º
◆ 脉冲峰值表:数字表头以3½ 位LED数字表,显示O~1000,误差<3%(以满度计)
◆ 试验电压表:量程50kV(可扩展),3½位LED数字表,显示0~1000,。误差<±2%
扬州多功能局部放电检测仪电力系统
技术指标
1、可测试品的电容量范围:6PF~250μF
2、检测灵敏度:
输入单元序号 | 调谐电容 | 灵敏度(PC) |
1 | 6~25~100 P F | 0.02 |
2 | 25~100~400 P F | 0.04 |
3 | 100~400~1500 P F | 0.06 |
4 | 400~1500~6000 P F | 0.1 |
5 | 1500~6000~25000 P F | 0.2 |
6 | 0.006~0.025~0.1 μ F | 0.3 |
7 | 0.025~0.1~0.4 μ F | 0.5 |
8 | 0.1~0.4~1.5 μ F | 1 |
9 | 0.4~1.5~6.0 μ F | 1.5 |
10 | 1.5~6.0~25 μ F | 2.5 |
11 | 6.0~25~60 μ F | 5 |
12 | 25~60~250 μ F | 10 |
7R | 电阻 | 0.5 |
3、放大器频带选择:
3分贝低频端频率10、20、40千赫任选;3分贝高频端频率80、200、300千赫任选。
4、定量校正脉冲发生器:
■发生器Ⅰ(低压校正注入输入单元);
※zui大输出电压(0分贝):100伏
※衰减范围0~139分贝,±1分贝
※前沿≤0.4微秒
■发生器Ⅱ(高压校正,注入试样):
※输出电压4伏~10毫伏,分11档
※前沿≤0.1微秒
5、门单元:
■门宽15°~150°
■每门可旋转0°~170°
6、放电量表:
■对数刻度1-10-100误差<10%
■线性刻度0-100误差<5%
7、椭圆时基:
■频率:50、100、150、200、400赫
■旋转可以30°为一档,作360°旋转
■显示方式:椭圆-扩展-直线
8、试验电压测量范围:
500伏、1.5千伏、5千伏(用5千伏电压表电阻)。5千伏、15千伏、50千伏(用50千伏电压表电阻)。
9、外形尺寸:525×545×530mm,重量约65kg
10、另可加配电源仪器车,移动极为方便。
扬州多功能局部放电检测仪电力系统
产品特性:
1.彩色显示器,双色显示波形,更清晰直观;
2.可锁定波形,更方便仔细查看放电波形细节;
3.自动测量并显示试验电源时基频率,无需手动切换;
4.配备VGA接口,可外接大尺寸显示器;
5.与示波管相比寿命更长。
6.具有波形锁定、打印试验报告功能;本仪器检测灵敏度高,试样电容覆盖范围大,适用试品范围广,输入单元(检测阻抗)配备齐全,频带组合多(九种)。仪器经适当定标后能直读放电脉冲的放电量。
电路及放电过程简介
介质内部含有气泡,在交流电压下产生的内部放电特性可由图1—1的模拟电路(a b c等值电路)予以表示;其中Cc是模拟介质中产生放电间隙(如气泡)的电容;Cb代表与Cc串联部分介质的合成电容;Ca表示其余部分介质的电容。
(a) 实际介质 (b) 模拟电路
I——介质有缺陷(气泡)的部份(虚线表示)
II——介质无缺陷部份
图1—1 表示具有内部放电的模拟电路
图1—1中以并联有—对火花间隙的电容Cc来模拟产生局部放电的内部气泡。图1—2表示了在交流电压下局部放电的发生过程。
图1-2 介质内单个气泡在交流电压下的局部放电过程
U(t)一一外施交流电压
Uc(t)一一气泡不击穿时在气泡上的电压
Uc’(t)一一有局部放电时气泡上的实际电压
Vc一一气泡的击穿电压
Y r一一气泡的残余电压
Us—局部放电起始电压(瞬时值)
Ur一一与气泡残余电压v r对应的外施电压
Ir一一气泡中的放电电流
电极间总电容Cx=Ca+(Cb×Cc)/(Cb+Cc)=Ca电极间施加交流电压 u(t)时,气泡电容Cc上对应的电压为Uc(t)。如图2—1所示,此时的Uc(t)所代表的是气泡理想状态下的电压(既气泡不发生击穿)。
Uc(t)=U(t)×Cb/Cc+Cb
外施电压U(t)上升时,气泡上电压Uc(t)也上升,当U(t)上升到Us时,气泡上电压Uc达到气泡击穿电压,气泡击穿,产生大量的正、负离子,在电场作用下各自迁移到气泡上下壁,形成空间电菏,建立反电场,削弱了气泡内的总电场强度,使放电熄灭,气泡又恢复绝缘性能。这样的一次放电持续时间是极短暂的,对一般的空气气泡来说,大约只有几个毫微秒(10的负8次方到10的负9次方秒)。所以电压Uc(t)几乎瞬间地从Vc降到Vr,Vr是残余电压;而气泡上电压Uc‘(t)将随U(t)的增大而继续由Vr升高到Vc时,气泡再—次击穿,发生又—次局部放电,但此时相应的外施电压比Us小,为(Us-Ur),这是因为气泡上有残余电压Vr的内电场作用的结果。Vr是与气泡残余电压Yr相应的外施电压,如此反复上述过程,即外施电压每增加(Us-Ur),就产生一次局部放电.直到前—次放电熄灭后,Uc’(t)上升到峰值时共增量不足以达Vc(相当于外施电压的增量Δ比(Us-Ur)小)为止。
此后,随着外施电压U(t)经过峰值Um后减小,外施电压在气泡中建立反方向电场,由于气泡中残存的内电场电压方向与外电场方向相反,故外施电压须经(Us+Ur))的电压变化,才能使气泡上的电压达到击穿电压Vc,(假定正、负方向击穿电压Vc相等),产生一次局部放电。放电很快熄灭,气泡中电压瞬时降到残余电压Vr(也假定正、负方向相同)。外施电压继续下降,当再下降(Us-Ur)时,气泡电压就又达到Vc从而又产生一次局部放电。如此重复上述过程,直到外施电压升到反向蜂值一Um的增量Δ不足以达到(Us-Ur)为止。外施电压经过一Um峰值后,气泡上的外电场方向又变为正方向,与气泡残余电压方向相反,故外施电压又须上升(Us+Ur)产生第—次放电,熄灭后,每经过Us—Ur的电压上升就产生一次放电,重复前面所介绍的过程。如图1—2所示。
由以上局部放电过程分析,同时根据局部放电的特点(同种试品,同样的环境下,电压越高局部放电量越大)可以知道:一般情况下,同一试品在一、三象限的局部放电量大于二、四象限的局部放电量。那是因为它们是电压的上升沿。(第三象限是电压负的上升沿)。这就是我们测量中为什么把时间窗刻意摆在一、三象限的原因。
本产品信息由(江苏久益电力设备有限公司)为您提供,内容包括(扬州多功能局部放电检测仪电力系统)的品牌、型号、技术参数、详细介绍等;如果您想了解更多关于(扬州多功能局部放电检测仪电力系统)的信息,请直接联系供应商,给供应商留言。若当前页面内容侵犯到您的权益,请及时告知我们,我们将马上修改或删除。
沪公网安备 31011502008050号