申克传感器SD-084/3/034/10/0/新闻行情
申克传感器SD-084/3/034/10/0/新闻行情中海德(福建)工业设备有限公司
联系人: 陈小真(女士)
电话:
联系手机:18005006971 微信同号
QQ:2851617312
传真:
福州市高新区乌龙江大道正荣财富ZXB座八层
(2)外加偏压对水解的影响
外加偏压虽然不是水解过程的必要条件,但要确定是否在一定程度上加快或延缓了水解速度,使得水解时间发生变化。因此设计以下试验验证:将材料A制作的试验板,在双85条件下静置0小时、2小时、4小时、8小时后,分别施加500V外加偏压,得到设计孔壁间距0.2、0.25、0.3mm下的失效时间,如表1:
表1 外加偏压对水解的影响
如果外加偏压对水解速度有明显的加快或延缓,由于各个条件下的静置时间和加电时间是各不相同的,那么4种情况(分别静置0、2、4、8小时再加外加偏压)下的总失效时间应有较大偏差。但从实际数据来看,所有孔壁间距下的4种情况的总失效时间并没有太大波动。因此,可以推断外加偏压对水解时间的影响可以忽略不计,外加偏压对于水解速度没有明显的加快或延缓。
(3)水解时间的确定
1) 外加偏压500V时的电化学迁移时间
在①中,已经证明了水解这一过程在无外加偏压的情况下也会发生。假设在双85条件(温度85℃、湿度85%RH)无外加偏压下放置96h后,孔壁间距0.2mm-0.35mm的模块均已完成了水解过程,形成了铜离子迁移的通道。再对所有模块施加500V的外加偏压,即得到500V下的电化学迁移时间。试验得出,设计孔壁间距0.2mm-0.35mm的模块在外加偏压500V时的电化学迁移时间均在0.5小时以内,相对于总失效时间可以忽略不计。
2)水解时间的确定
对选用材料A制作的试验板进行CAF试验(双85条件,外加偏压500VDC),即可近似得到设计孔壁间距0.2mm-0.35mm下的水解时间,如图7:
图7 材料A在不同孔壁间距下的水解时间
从图7可以看到,随着孔壁间距的增加,其水解时间也在上升,近似成正比关系。
5.2 平均CAF失效时间的分解分析
从上面的一系列试验中,可以证明水解时间和电化学迁移时间之间是相互独立的,水解时间和电化学迁移时间互相没有影响:
①未施加偏压的情况下,水解过程也可进行;在施加外加偏压的情况下,水解速度无明显加快或延缓;水解时间与外加偏压无关。
②指定板材、孔壁间距下的水解时间是一定的,且随着孔壁间距的上升而近似成正比关系上升。
因此平均CAF失效时间可以拆分成水解时间和电化学迁移时间分别进行分析和试验。那么以下公式应是成立的:平均CAF失效时间(MTF)=水解时间(T1)+电化学迁移时间(T2)。 当外加偏压较大(100V以上)时,电化学迁移速度快于水解速度,平均CAF失效时间(MTF)主要取决于水解时间(T1),接近于材料A在指定孔壁间距下的水解时间;当外加偏压较小(10V以下)时,水解速度快于电化学迁移速度,平均CAF失效时间(MTF)主要取决于电化学迁移时间(T2)。而水解时间(T1)不受外加偏压影响,电化学迁移时间(T2)受外加偏压影响,因此图5中的曲线随着外加偏压的变化呈现两段趋势。
GP570-BG11-24 |
LOG-B B128C-2 |
NJ CPU B16 |
FTU 223B FTU500A FTU210 |
FTU120C |
FTU 123B |
FTU220A |
NP1Y64T09P1 |
NP1W6406T |
ZW-28M122 |
CPU FPC120T |
FPU120H-A10 |
FBP56HS-A10 |
FPB56R-A10 |
NB2-E90R3-AC |
NC1H-PL1 |
NC1S-2 |
NB1-P40-AC |
FPU080A-A10 |
A6CON1可编程插头通40针接头 |
FTB300A |
FPB56R3-A10 |
FDL120A-A10 |
FPC220P |
FPU140S-A10 |
NC1F-SP2 |
FTU 266B |
FTU 611C |
FTU 222A |
FTL651B |
FTU 340A |
NP1PS-32 |
NP1PH-16 |
EA33M AC220V |
EA32 AC220V |
EA33 AC220V |
GYS751DC2-T2C 750W |