氮化硅零件产品详细:正是由于氮化硅陶瓷具有如此优异的特性 ,人们常常利用它来制造燃气发动机的耐高温部件 、 化学工业中耐腐蚀部件 、 半导体工业中的坩埚 、 以 及高温陶瓷轴承 、 高速切削工具 、 雷达天线罩 、 核反 应堆的支撑 、隔离件和裂变物质的载体等
本公司今日报道:
供应氮化硅零件,耐高温SN-02陶瓷管直径20*5,加工定制高纯氮化硅陶瓷
随着陶瓷技术的发展,精密陶瓷由于其优异的线膨胀系数在各种陶瓷中Z小,使用温度高达1400℃,具有极好的耐腐蚀性,在高温耐磨行业发挥着大量的成效。陶瓷根据材料需求和制造工艺的不同,可分为氧化铝陶瓷,氧化锆陶瓷,氮化硅陶瓷。按照产品的外形可分陶瓷定位片 定位块 定位环等。对大多数厂家技术采购人员而言,有需要的朋友肯定比较关心氮化硅零件的优势?氮化硅零件的断裂特性?氮化硅零件的机械性能?以及氮化硅零件的用途等问题。在这里就为大家大致的介绍下氮化硅零件产品知识:
氮化硅零件产品详细:
正是由于氮化硅陶瓷具有如此优异的特性 ,人们常常利用它来制造燃气发动机的耐高温部件 、 化学工业中耐腐蚀部件 、 半导体工业中的坩埚 、 以 及高温陶瓷轴承 、 高速切削工具 、 雷达天线罩 、 核反 应堆的支撑 、隔离件和裂变物质的载体等
氮化硅零件销售范围:
潮州市 湘桥区、潮安区、饶平县、
氮化硅零件产品优势:
厂家直销,让利给客户,并提供优质的售前售后服务。
合作伙伴:
江门市地尔电器股份有限公司 深圳市易铭达机电技术开发有限公司 深圳市高新奇科技股份有限公司 北京大唐高鸿数据网络技术有限公司。
氮化硅零件制备工艺流程:
荷兰的科研工作者采用沉淀法制备出铁氧体粉料,他们先将铁的氢氧化物与基液均匀混合,然后在氧/氮或硝酸盐中氧化获得颗粒尺寸0.03~0.33μm的粉体,具有20%的分散率选用适当的氢氧化物可获得60'%理论密度的生坯用四丁基氨的氢氧化物可获得Z致密的坯体该国科学家还利用另一种沉淀技术制备出高比表面积的活性氧化钇,借助钇离子对溶液中聚合物鳌合剂的鳌合作用形成凝胶状的沉淀物沉淀物的灰化温度决定了氧化钇离子比表面积的晶体尺寸
氮化硅零件烧结工艺流程:
气压烧结,气压烧结是指把成型的氮化硅坯体置于5-12MP的氮气中在1800-2100℃下进行烧结由于氮气压力高,因此提高了氮化硅的分解温度,选用能形成高耐火度晶间相的烧结助剂可以提高材料的高温性能(5)热等静压法将氮化硅与烧结助剂的混合物粉末封装于金属或玻璃包套中,抽真空,然后通过高压气体在高温下烧结常用压力为200MP,温度为2000℃通过热等静压法制得的氮化硅可达理论密度,但是其工艺复杂成本较高
氮化硅零件成型工艺流程:
注浆成型法:注浆成型采用石膏模、成本低且易于成型大尺寸、外形复杂的部件注浆成型的关键是料的制备通常以水为熔剂介质,再加入解胶剂与粘结剂,充分研磨之后排气,然后倒注入石膏模内由于石膏模毛细管对水分的吸附,浆料遂固化在模内空心注浆时,在模壁吸附浆料达要求厚度时,还需将多余浆料倒出为减少坯体收缩量、应尽量使用高浓度浆料3、 烧制成型法: 将颗粒状陶瓷坯体致密化并形成固体材料的技术方法叫烧结烧结即将坯体内颗粒间空洞排除,将少量气体及杂质有机物排除,使颗粒之间相互生长结合,形成新的物质的方法
售后服务:
每月上门询问更换耗材及配件后设备的运行状况,以便提前发现机器故障隐患,及时保养机器和排除机器故障。
客户评价:
2017-04-21 15:01:14 宗 工 :汗,回错了,是氮化硅陶瓷座很好。
2017-11-14 17:46:55 松 女士 :非常满意,正在推荐朋友购买,祝生意越做越大。
2017-06-23 21:21:56 符 主管 :汗,回错了,是氮化硅陶瓷座很好。
氮化硅零件行业资讯:
缺乏优质先进陶瓷粉末原料生产企业目前,虽然国内先进陶瓷粉末原料生产企业很多,但陶瓷粉末性能通常存在较大的分散性和不稳定性,因此直接影响后续批量化制备的陶瓷产品性能和可靠性近几年国内在一些高品质氧化物陶瓷粉末产业化方面已有突破,如山东国瓷和广东华旺公司采用先进的水热水解技术生产的纳米氧化锆粉已作为高端生物陶瓷的齿科材料获得广泛应用,在国内外均占有较大的市场份额;潮州三环生产的用于手机陶瓷背板的高强度高韧性氧化锆专用粉,已成功用于小米6、小米MIX2、OPPO等多款手机陶瓷背板,可经受从1米高度不同角度的跌落无任何破裂;江西赛瓷公司生产的高性能低温烧结纳米氧化锆粉已成功应用于光纤连接器陶瓷插芯,从而打破了日本Tosoh等公司在这一领域的垄断但是我国在其他许多重要的结构陶瓷粉末方面还达不到这种水平,例如高纯度易烧结的氧化铝陶瓷粉末,仍然依赖从日本大明公司、住友公司、昭和电工以及德国纳博特公司、安迈公司和法国的一些公司进口特别是高性能非氧化物陶瓷粉末,如氮化硅、氮化铝、碳化硅、碳化硼、硼化锆等共价键陶瓷粉末,国内尚缺乏的生产供应商例如用于制备高强度陶瓷轴承的氮化硅粉末主要依赖从日本宇部公司(简称UBE公司)及瑞典的公司进口;而半导体芯片封装用的高导热基板用氮化铝陶瓷粉主要从日本德山曹达等公司进口,而高性能的碳化硅陶瓷粉末需从法国圣戈班公司进口,高品质的防弹装甲用碳化硼、超高温陶瓷用硼化锆等粉末需从德国H.C.Starck等公司进口;特别是核电站中子吸收用的核级碳化硼原料存在较大差距大连金玛硼业是国内在高性能碳化硼粉末研发和生产有实力的企业,正在拉近与国际先进水平的差距上述这些依赖进口的高端陶瓷粉料一旦被卡脖子(类似中兴芯片),将会被置于极端危险的境地。
更多关于氮化硅陶瓷的知识
基本性质
氮化硅的很多性能都归结于此结构。纯Si3N4为3119,有α和β两种晶体结构,均为六角晶形,其分解温度在空气中为1800℃,在110MPa氮中为1850℃。Si3N4 热膨胀系数低、导热率高,故其耐热冲击性。热压烧结的氮化硅加热到l000℃后投入冷水中也不会破裂。在不太高的温度下,Si3N4 具有较高的强度和抗冲击性,但在1200℃以上会随使用时间的增长而出现破损,使其强度降低,在1450℃以上更易出现疲劳损坏,所以Si3N4 的使用温度一般不超过1300℃。由于Si3N4 的理论密度低,比钢和工程超耐热合金钢轻得多,所以,在那些要求材料具有高强度、低密度、耐高温等性质的地方用Si3N4 陶瓷去代替合金钢是再合适不过了。 [1]
材料性能编辑
Si3N4 陶瓷材料作为一种优异的高温工程材料,发挥优势的是其在高温领域中的应用。Si3N4 今后的发展方向是:⑴充分发挥和利用Si3N4 本身所具有的优异特性;⑵在Si3N4 粉末烧结时,开发一些新的助熔剂,研究和控制现有助熔剂的成分;⑶改善制粉、成型和烧结工艺; ⑷研制Si3N4 与SiC等材料的复合化,以便制取更多的高性能复合材料。Si3N4 陶瓷等在汽车发动机上的应用,为新型高温结构材料的发展开创了新局面。汽车工业本身就是一项集各种科技之大成的多学科性工业,ZG是具有悠久历史的文明古国,曾在陶瓷发展史上做出过辉煌的业绩,随着改革开放的进程,有朝一日,ZG也必然跻身于世界汽车工业大国之列,为陶瓷事业的发展再创辉煌。
它极耐高温,强度一直可以维持到1200℃的高温而不下降,受热后不会熔成融体,一直到1900℃才会分解,并有惊人的耐化学腐蚀性能,能耐几乎所有的无机酸和30%以下的烧碱溶液,也能耐很多有机酸的腐蚀;同时又是一种高性能电绝缘材料。
工艺方法编辑
它是用硅粉作原料,先用通常成型的方法做成所需的形状,在氮气中及1200℃的高温下进行初步氮化,使其中一部分硅粉与氮反应生成氮化硅,这时整个坯体已经具有一定的强度。然后在1350℃~1450℃的高温炉中进行第二次氮化,反应成氮化硅。用热压烧结法可制得达到理论密度99%的氮化硅。
制备方法编辑
Si3N4 陶瓷的制备技术在过去几年发展很快,制备工艺主要集中在反应烧结法、热压烧结法和常压烧结法、气压烧结法等类型. 由于制备工艺不同,各类型氮化硅陶瓷具有不同的微观结构(如孔隙度和孔隙形貌、晶粒形貌、晶间形貌以及晶间第二相含量等)。因而各项性能差别很大 。要得到性能优良的Si3N4 陶瓷材料,首先应制备高质量的Si3N4 粉末. 用不同方法制备的Si3N4 粉质量不完全相同,这就导致了其在用途上的差异,许多陶瓷材料应用的失败,往往归咎于开发者不了解各种陶瓷粉末之间的差别,对其性质认识不足。一般来说,高质量的Si3N4 粉应具有α相含量高,组成均匀,杂质少且在陶瓷中分布均匀,粒径小且粒度分布窄及分散性好等特性。好的Si3N4 粉中α相至少应占90%,这是由于Si3N4 在烧结过程中,部分α相会转变成β相,而没有足够的α相含量,就会降低陶瓷材料的强度。
反应烧结法( RS)
是采用一般成型法,先将硅粉压制成所需形状的生坯,放入氮化炉经预氮化(部分氮化)烧结处理,预氮化后的生坯已具有一定的强度,可以进行各种机械加工(如车、刨、铣、钻). ,在硅熔点的温度以上;将生坯再一次进行完全氮化烧结,得到尺寸变化很小的产品(即生坯烧结后,收缩率很小,线收缩率< 011% ). 该产品一般不需研磨加工即可使用。反应烧结法适于制造形状复杂,尺寸精确的零件,成本也低,但氮化时间很长。
热压烧结法( HPS)
是将Si3N4 粉末和少量添加剂(如MgO、Al2O3、MgF2、Fe2O3 等),在1916 MPa以上的压强和1600 ℃以上的温度进行热压成型烧结。英国和美国的一些公司采用的热压烧结Si3N4 陶瓷,其强度高达981MPa以上。烧结时添加物和物相组成对产品性能有很大的影响。由于严格控制晶界相的组成,以及在Si3N4 陶瓷烧结后进行适当的热处理,所以可以获得即使温度高达1300 ℃时强度(可达490MPa以上)也不会明显下降的Si3N4系陶瓷材料,而且抗蠕变性可提高三个数量级。若对Si3N4 陶瓷材料进行1400———1500 ℃高温预氧化处理,则在陶瓷材料表面上形成Si2N2O相,它能显著提高Si3N4 陶瓷的耐氧化性和高温强度。热压烧结法生产的Si3N4 陶瓷的机械性能比反应烧结的Si3N4 要优异,强度高、密度大。但制造成本高、烧结设备复杂,由于烧结体收缩大,使产品的尺寸精度受到一定的限制,难以制造复杂零件,只能制造形状简单的零件制品,工件的机械加工也较困难。
常压烧结法( PLS)
在提高烧结氮气氛压力方面,利用Si3N4 分解温度升高(通常在N2 = 1atm气压下,从1800℃开始分解)的性质,在1700———1800℃温度范围内进行常压烧结后,再在1800———2000℃温度范围内进行气压烧结。该法目的在于采用气压能促进Si3N4 陶瓷组织致密化,从而提高陶瓷的强度.所得产品的性能比热压烧结略低。这种方法的缺点与热压烧结相似。
气压烧结法( GPS)
近几年来,人们对气压烧结进行了大量的研究,获得了很大的进展。气压烧结氮化硅在1 ~10MPa气压下,2000℃左右温度下进行。高的氮气压YZ了氮化硅的高温分解。由于采用高温烧结,在添加较少烧结助剂情况下,也足以促进Si3N4晶粒生长,而获得密度> 99%的含有原位生长的长柱状晶粒高韧性陶瓷. 因此气压烧结无论在实验室还是在生产上都得到越来越大的重视. 气压烧结氮化硅陶瓷具有高韧性、高强度和好的耐磨性,可直接制取接近形状的各种复杂形状制品,从而可大幅度降低生产成本和加工费用. 而且其生产工艺接近于硬质合金生产工艺,适用于大规模生产。