品牌
其他品牌
货号
20HR
规格
HZY12-100
供货周期
现货
主要用途
UPS电源蓄电池,直流屏蓄电池
应用领域
环保/水工业,地矿,能源,电子/电气/通讯/半导体,铁路/船舶/交通
HZY12-100/海志HAZE免维护蓄电池厂矿用电

对已硫化电池,可以先将电池放电,倒出原电解液并注入密度在1.10g/cm3以下较稀电解液,即向电池中加水稀释电解液,以提高硫酸铅的溶解度。采用20h率以下的电流,在液温不超过20℃~40℃的范围内较长时间充电,在充足电情况下用稍高电解液调整电池内电解液密度至标准溶液浓度,一般硫化现象可解除,容量恢复至80%以上可认为修复成功。 此法机理,用降低酸液密度提高硫酸盐的溶度积,采取小电流长时间充电以降低欧姆极化延缓水分解电压的提早出现,使硫化现象在溶解和转化为活性物质中逐渐减轻或消除。 此法特点对于加水蓄电池比较适用,对于硫化严重现象亦可反复处理,无须投资设备即可自行修复,缺点是过程太繁琐对密封电池不太使用。 2、浅循环大电流充电法 对已硫化电池,采用大电流5h率以内电流,对电池充电至稍过充状态控制液温不超过40度为宜,然后放电30%,如此反复数次可减轻和消除硫化现象。 此法机理,用过充电析出气体对极板表面轻微硫化盐冲刷,使其脱附溶解并转化为活性物质。 此法特点,对于轻微硫化可明显修复。但对老电池不适用,因为在析出气体冲刷硫酸盐的同时也对正极板的活性物产生强烈冲刷,使活性物质变软甚至脱落。
电池型号 | 每箱 | 外形尺寸(mm)&重量(kg) | 外形尺寸(英寸)&重量(磅) | 端子型号 | 美国标准型号 | 内阻(毫欧) | 电导率值+/-25% | 充电电流 | 0℃下启动电流 | 短路电流(安培) |
个数 |
| 长 | 宽 | 高 | 重量 | 长 | 宽 | 高 | 重量 |
HZB12-18 | 2 | 181 | 76 | 167 | 5.3 | 7.13 | 2.99 | 6.57 | 11.7 | C - M5 | - | 14.5 | 400 | 4.5 | 270 | 732 |
HZB12-26 | 1 | 168 | 178 | 124 | 8.4 | 6.61 | 7.01 | 4.88 | 18.6 | C - M5 | - | 8.6 | 420 | 6.5 | 300 | 900 |
HZB12-28 | 1 | 166 | 125 | 175 | 9 | 6.54 | 4.92 | 6.89 | 19.9 | C - M5 | - | 9.2 | 450 | 7 | 305 | 910 |
HZB12-33 | 1 | 195 | 130 | 160 | 10.7 | 7.68 | 5.12 | 6.30 | 23.6 | B - M6 | U1 | 9.2 | 500 | 8 | 320 | 1100 |
HZB12-44 | 1 | 198 | 167 | 157 | 13.8 | 7.80 | 6.57 | 6.18 | 30.5 | C - M6 | - | 8.1 | 670 | 11 | 350 | 1400 |
HZB12-55 | 1 | 229 | 138 | 213 | 17 | 9.02 | 5.43 | 8.39 | 37.6 | B - M6 | 22NF | 8.6 | 600 | 14 | 380 | 1700 |
HZB12-70J | 1 | 349 | 168 | 175 | 21.1 | 13.74 | 6.61 | 6.89 | 46.6 | C - M6 | - | 6.6 | 900 | 18 | 550 | 2100 |
HZB12-70 | 1 | 260 | 168 | 211 | 23.6 | 10.24 | 6.61 | 8.31 | 52.2 | B - M6 | 24 | 6.6 | 1000 | 18 | 550 | 2100 |
HZB12-80 | 1 | 260 | 168 | 211 | 25.5 | 10.24 | 6.61 | 8.31 | 56.4 | B - M6 | 24 | 6.6 | 1150 | 20 | 620 | 2400 |
HZB12-100 | 1 | 306 | 168 | 211 | 29.6 | 12.05 | 6.61 | 8.31 | 65.4 | B - M6 | 27 | 5.3 | 1300 | 25 | 780 | 2900 |
HZB12-110 | 1 | 329 | 173 | 209 | 32.6 | 12.95 | 6.81 | 8.23 | 72.0 | B - M6 | 31 | 5.3 | 1200 | 27 | 960 | 3000 |
HZB12-120 | 1 | 408 | 176 | 224 | 36.2 | 16.06 | 6.93 | 8.82 | 80.0 | B - M6 | - | 4 | 1250 | 30 | 1020 | 3300 |
HZB12-135 | 1 | 340 | 173 | 283 | 43.3 | 13.39 | 6.81 | 11.14 | 95.7 | B - M6 | - | 3.6 | 1300 | 35 | 1160 | 3750 |
HZB12-150 | 1 | 482 | 170 | 240 | 44.2 | 18.98 | 6.69 | 9.45 | 97.7 | B - M6 | - | 3.3 | 1300 | 38 | 1300 | 4200 |
HZB12-160 | 1 | 530 | 209 | 214 | 52.7 | 20.87 | 8.23 | 8.43 | 116.5 | E - M6 | 4D | 2.6 | 1750 | 40 | 1440 | 4700 |
HZB12-200 | 1 | 522 | 240 | 220 | 62 | 20.55 | 9.45 | 8.66 | 137.0 | E - M8 | - | 2.6 | 2050 | 50 | 1670 | 5400 |
HZB12-230 | 1 | 521 | 269 | 203 | 73 | 20.51 | 10.59 | 7.99 | 161.3 | E - M8 | 8D | 2.6 | 2150 | 57 | 1870 | 5900 |
HZB6-110 | 1 | 193 | 168 | 205 | 17 | 7.60 | 6.61 | 8.07 | 37.6 | A - M6 | - | 5.1 | 1300 | 27 | 1010 | 3200 |
HZB6-125 | 1 | 345 | 128 | 202 | 19.1 | 13.58 | 5.04 | 7.95 | 42.2 | A2 - M6 | - | 5 | 1400 | 31 | 1100 | 3500 |
HZB6-160 | 1 | 298 | 171 | 226 | 27 | 11.73 | 6.73 | 8.90 | 59.7 | A - M6 | - | 2.6 | 1500 | 40 | 1290 | 4600 |
HZB6-200 | 1 | 323 | 178 | 225 | 30.9 | 12.72 | 7.01 | 8.86 | 68.3 | A - M8 | - | 2.6 | 2050 | 50 | 1600 | 5000 |
一款采用NE555芯片制作的蓄电池充满自停电路,其电路简单,不需复杂的调试。该电路带有充电指示灯,在给蓄电池充电时,LED指示蓄电池处于充电状态,当蓄电池充满电时,LED指示灯熄灭,同时切断充电回路,防止过充电损坏蓄电池。
▲ 蓄电池充满自停电路原理图。
上图中NE555及其外围元件接成一个施密特触发器,用于对蓄电池的充电电压进行检测。NE555芯片的一般应用电路中,其⑤脚都是通过一个0.01μF的小电容接地,本电路中,NE555的⑤脚接精密基准电压源TL431产生的2.5V基准电压,这样可以提高充电电压的检测精度。
▲TO-92封装的TL431的引脚排列。
电路中,NE555的②⑥脚直接相连接成一个施密特触发器,其上限阈值电压为2.5V(即TL431的稳定电压),下限阈值电压为1.25V,回差电压亦为1.25V。
图中的S为大电流的微动开关。按下S,整个电路得电工作,由于刚接通电源时,C1两端电压为0,故NE555的②⑥脚为低电平,其输出端③脚输出为高电平,继电器J得电工作,其常开触点闭合,蓄电池开始充电(图中的+V为充电器的输出电压)。LED为充电指示灯,在蓄电池充电期间,LED一直点亮。当蓄电池充满电时,NE555的②⑥脚电压>2.5V,此时NE555的③脚输出为低电平,继电器失电停止工作,蓄电池停止充电,同时LED熄灭。蓄电池的充满电压可由电阻R1调整,改变其阻值即可使电路在所需的电压下自动停止充电。
HZY12-100/海志HAZE免维护蓄电池厂矿用电