安装前的工作:西门子软启动使用
1、安装STEP7-Micro/WINV4.0SP前,应在PG或PC上已安装并运行了更早的版本STEP7-Micro/WINV4.0。有专家估计,质谱的临床检测将具有一百亿以上的市场规模。在重庆大学学院教授李卫国眼里,这些材料力学行为随温度的演化都可以用理论模型进行预测。在这一时间内,BEC可能被冷却到创世纪的低温,或许只比零度高20万亿分之一摄氏度。近期的仪器仪表行业还有哪些采购大呢。在政策利好推动、行业前景明朗的双重背景下,近期上海电气、集团等多个知名企业纷纷跨行业向器械市场布局。
2、下载STEP7-MicroWINV4.0SP8后,解压缩该文件。
3、然后找到解压STEP7-Micro/WINV4.0SP8后的文件夹,切换到文件夹xx/MicroWIN,双击Rejoin.bat文件。 安装: 双击STEP7-MicroWIN_V40_SP8.exe文件开始安装。
请按照安装中弹出的提示进行操作。
第1步:通过Windows控制面板卸载旧版本STEP7-Micro/WINV4.0。
第2步:冷重启计算机。
第3步:通过再次双击STEP7-MicroWIN_V40_SP8.exe文件,安装STEP7-Micro/WINV4.0SP8。
安装新的STEP7Micro/WINV4.0SP8后,也为下列安装了新补丁:
+S7-200Explorer+TDKeypadDesigner 这两个程序都是STEP7-Micro/WINV4.0的免费组件,在安装新的SP8时会自动升级。 安装新的STEP7-Micro/WINV4.0SP8后,会自动升级已安装的STEP7-Micro/WIN指令库。
STEP7-Micro/WIN指令库(订货号:6ES7830-2BC00-0YX0)是STEP7-Micro/WIN的可选组件,有偿提供。随着监测市场的需求越来也越大,的监测站已经不能够全社会的监测需求,因此,社会监测机构应运而生,第三方监测市场迅速发展。原则上依托单位实验室总面积不低于5000平方米,ZD实验室总面积不低于1000平方米,并相对集中。在节目中,方向向观众展示了现在的容量计量仪器,包含了金属量器,微小容量测量器、大型立式金属罐等多种计量仪器。而“电商型号”也大多是为了这类人的需求。将更好的服务企业技术创新,不断扩大联盟平台建设,逐步增强联盟的影响力和辐射力。
如果在文件夹中没有安装以前的版本,则可能无法自动升级S7-200Explorer和TDKeypadDesigner。这种情况下,必须手动安装这两个包。切换到相关目录,执行Rejoin.bat,然后在这些情况下执行EXE文件开始安装。
不论是废钢回收利用,还是针对传统热风炉工艺,西门子技术正在帮助降低炼钢厂的能耗。其结果是:节约资源、减少排放、合理降低运营成本。
电弧炼钢炉。几乎每一栋建筑物和每一辆汽车都需要使用钢材。年钢产量达15亿吨以上。
一台威力无比的电弧炼钢炉内,一场风暴正在肆虐。每隔几秒钟,就会发出震耳欲聋的爆炸声和嘶嘶作响的嘈杂音。火红的钢水在炉内沸腾翻滚,犹如涌动的火山岩浆。直径与检修孔盖厚度差不多的石墨电极,以高压形式向电弧炼钢炉内输入电能,燃起熊熊烈焰,使炉内温度达到1540摄氏度以上,令废钢熔化,炼成新钢。这类电炉的耗电量往往比一座小城镇还大。不过,利用常规热风炉来冶炼铁矿石的传统炼钢工艺,也要消耗大量能源。在超过1400摄氏度的高温下工作,这种高度堪比高层建筑的炼钢炉,可以利用铁矿石、煤炭、焦炭等原料,冶炼出生铁,以供进一步加热精炼成钢材。
因而不足为奇的是,除了为轮船、汽车、铁路和桥梁等提供基本材料外,钢铁工业也会因耗用电能和煤炭而产生大量的二氧化碳。位于奥地利林茨的西门子奥钢联钢铁科技有限公司的炼钢和ECO解决方案技术与创新管理部门主管Alexander Fleischanderl博士表示:“炼钢厂排放的二氧化碳,占二氧化碳总排放量的6.7%。”然而,他不愿将炼钢厂视为环境的敌人,因为用钢铁制成的产品也是不可或缺的节能工具。譬如,风电机组、太阳能发电系统和GX燃气轮机等都离不开钢铁部件。此外,Z近几十年,钢铁制造商已经降低了能耗,从而大大减少了二氧化碳的排放量。Fleischanderl指出:“在欧洲,50年前,生产一吨成品,要耗用大约30千兆焦耳能量,1990年,这个数字为24千兆焦耳。如今,每吨成品的能耗已降至不足18千兆焦耳。现在,一座产能为500万公吨产品的一般综合炼钢厂,每年要排放约800万吨二氧化碳,比1960年减少了37%。”
不过,仍有尚需改进之处。这主要是因为大部分废热都未能得到利用。Markus Dorndorf博士是西门子电炉炼钢业务部的研发主管,他说:“炼钢耗用的能源,有近三分之一是从温度高达1400摄氏度左右的电弧炉,以烟气排放的形式被浪费了。”但如果将这些废热用于驱动蒸汽轮机,那么,由此生产的电能,可以满足10%的用电需求。为此,Stahlwerk Thüringer GmbH——一家坐落于埃尔富特以南约60公里处的电炉炼钢厂——请西门子设计并提供了一个通过在热源与蒸汽轮机之间安装熔盐储罐,来保证稳定供应电能的能量回收系统。
上图:西门子提供的全新电弧炉,利用了过程废气来预热废钢以供熔炼。这可将能耗降低20%以上。
下图:巨型石墨电极将废钢加热至1540摄氏度,将之炼成新的优质钢材。
如果利用过程废热来预热废钢,还可以大幅降低二氧化碳的排放量——西门子打造的Simetal EAF Quantum电弧炼钢炉,便采用了这样的技术。目前,西门子正在墨西哥为钢铁制造商TYASA公司建造的座此种类型的高性能炼钢炉,计划于2014年上半年投入运行。相比于传统解决方案,EAF Quantum电弧炼钢炉的能耗会降低20%。除此之外,相比于传统电弧炼钢炉,它还具备诸多其他优点,包括冶炼周期更短、熔化电极使用寿命更长,以及摊销期限更短等。
将烟气用作资源。采用热风炉工艺,在将铁矿石炼成生铁的过程中,也可以大大减少温室气体的排放量。要挖掘减排潜力,烧结工艺首当其冲。烧结是将铁矿石、诸如焦炭或煤炭等燃料以及助熔剂等的混合物放到炉床上,并从上方加热,从而使之固结。Fleischanderl说:“在一座普通炼铁厂,这道工艺每小时会产生超过100万立方米的烟气,这些气体中含有因不完全燃烧而生成的一氧化碳及其他污染物。”但借助西门子的“选择性烟气再循环(SWGR)”技术,可将多达50%的烟气送回烧结工艺。然后,一氧化碳将被再一次用作燃料,从而将焦炭的需求量和二氧化碳的排放量降低10%左右。产生的烟气越少,所需的烟气净化成本就越低。短短几年来,在奥地利林茨的奥钢联集团旗下的烧结厂以及其他地方,SWGR已经取得了不俗的成效。此外,结合使用曾为Fleischanderl赢得西门子“2013年度发明家大奖”的西门子MEROS烟气净化技术,林茨烧结厂还清除了多达99%的污染物(包括硫氧化物、氮氧化物、重金属和诸如二恶英等有机化合物)或将之转化为无害物质。譬如,MEROS系统使用了氢氧化钙及其他物质,将二氧化硫转化为石膏,而重金属和二恶英,则被封存于诸如平炉焦炭(HOK)或活性焦炭等干燥吸附剂中。将所需吸附剂高速吹入烟气流中,然后用水喷淋添加剂与烟气的混合物,使其温度降至90摄氏度左右。Fleischanderl表示:“这样做能加快预期的化学反应。”然后,分离出颗粒物质,由于这些物质依然含有活性添加剂,因此可以多次将之重复循环到烟气流中。西门子已经在奥地利和ZG建造了三套MEROS设备,并且接到订单要在土耳其提供1套,在意大利提供4套MEROS设备。
MEROS烟气净化技术,可从炼钢厂废气中清除多达99%的污染物。
在接下来的工序中,将利用热风炉把铁烧结矿和助熔剂熔炼成生铁,以供炼钢之用。这个过程也会产生废气,直接将之烧掉是可耻的做法。要知道,这些可燃烧的过程废气含有大量一氧化碳。如今,通常的做法是将之输入燃气发电设备用于发电,目前其发电效率不足40%。无论如何,这些废气的利用率可以进一步提高。Fleischanderl说:“借助生物发酵技术,可以利用细菌,将一氧化碳转化为乙醇及其他有价值的工业化学品。”为此,西门子与Lanza-Tech公司展开了合作。Lanza-Tech公司是美国一家从事气体发酵技术的公司。利用可燃烧的过程废气来生产生物乙醇,可以实现60%以上的效率,并且不会对农作物种植构成竞争。目前已在ZG建成一个示范系统,并投入运行。
用矿渣生产水泥。哪怕是矿渣——一种高炉炼铁的副产品,也蕴含着巨大的潜力有待挖掘。在范围内,每年要产生将近4亿公吨矿渣。传统工艺的做法是将温度高达约1500摄氏度、还在嘶嘶作响的矿渣分离并倒入装有冷水的水槽中。由此形成的粒状物料主要用于生产水泥。但采用西门子研制的一项技术,可以在干燥状态下将矿渣粒化,从而可以从中回收大量热能。Fleischanderl指出:“这种干式粒化工艺,采用空气来冷却矿渣。将矿渣放到转盘中,仅靠离心力作用,将之粒化。”
可以通过多种途径重复利用过程废气——譬如,用于发电或用作燃料。
在这个过程中,冷却空气的温度将升高至600摄氏度左右。接下来,如果让这些空气流经热交换器,那么,其中蕴含的热能可以被用来产生水蒸汽,后者可以被直接用作热源甚至用于发电。采用这种方法,可以从每公吨高炉矿渣中回收约1.5千兆焦耳能量,或者生产400多度电能。若以热风炉而论,依据热风炉的大小,这代表着1万到3万千瓦的发电容量。这样一来,便无需花费不菲的成本来处理冷却水,以及建造成本高昂的冷却塔。此外,粒状物料也不必进行烘干处理。对于每一公吨矿渣,这又能节约至少130度电能。鉴于这些优点,目前西门子正计划与奥钢联集团合作在林茨建造一个示范系统。
在转炉——外形类似汤釜的巨型容器——中,从热风炉出来的生铁与废钢、助熔剂、合金添加剂以及氧气等混合,被炼成目标钢种。针对这道工艺,西门子工程师也开发了相应的节能技术,并且这项节能技术甚至有助于提高炼钢的灵活性。得益于Jet Process技术,转炉不仅能冶炼生铁,还能冶炼更大量的废钢,并且冶炼效率也比以前更高。在这个过程中,通过位于底部的风口(喷嘴),将煤炭、氧气和石灰石等炉料加入熔化的生铁中,同时,通过喷枪从顶部射入温度高达1300摄氏度左右的富氧热空气。位于林茨的西门子奥钢联钢铁科技有限公司的Gerald Wimmer博士是这项技术的开发者之一,他说:“相比于传统转炉,这项技术能够更加均匀地搅拌各种炉料,从而使碳更有效地转化为二氧化碳。”此外,转化过程中释放的热能,被回收用于炼钢熔池,而不是随废气消散掉。
上图:废钢在特殊高炉中熔化。下图:基于ESP技术的带钢生产非常GX。下图:炼钢专家和发明家Alexander Fleischanderl博士。
从高炉到轧制钢板。近几年,西门子掌握了一项非常GX、节能的技术,可用于加工刚炼好的钢水,譬如,将之轧制成钢板。这项名为“Arvedi ESP(无头带钢生产)”的技术,由意大利钢铁制造商Arvedi公司开发。现行的惯常做法是,将从钢水直接铸出的炽热钢带不作剪切,而是临时存放并冷却。与此不同,这项技术却是立即进行下一步加工。西门子林茨销售经理Andreas Jungbauer解释道:“从板坯浇铸,到带钢轧制,再到生产出带卷,整个过程在一条连贯的生产线上不间断地进行。”归功于这项工艺,轧制设备在重新将钢带加热至所需的1200摄氏度,以进行轧制时,仅需稍事加热即可。实际上,这可将有关能耗Z多降低45%。相比于传统设备,这项技术还可将二氧化碳排放量Z多降低39%,同时将营运成本削减37%。此外,无头带钢生产不会因剪切带钢而产生废料。目前,意大利克雷莫纳的一座钢铁厂正在使用西门子的这项技术。西门子为ZG的两座钢铁厂提供的无头带钢生产系统,也有望于2015年投产。
,在整个钢铁制造过程中,自动化系统能够节约大量能源。Fleischanderl说:“过去10年,我们一直着眼于提高产量和加快生产速度。然而现在,出现了严重的产能过剩,炼钢厂利用率往往只有70%或80%。”西门子提供的“Green Button”系列解决方案,可帮助多个工业领域在当前利用率的基础上,优化工业过程的能效。
譬如,可以为除尘设备自动减速,或关闭暂时不需要使用的泵和风扇。据初步的实地测试表明,这样的举措,可将有关能耗降低多达40%。Fleischanderl指出,Precon便是一个这样的例子。Precon是一个自动化解决方案,可优化用来净化转炉烟气的静电除尘器的电源供给。他说:“如果钢铁行业为节约能源、原材料以及限度减排,而采用当前市场上的所有西门子技术,那么,事实上,这将是你所能做的一切。这样做,既可提高经济效益,又切实可行。”