嘉兴市高价回收西门子PLC工程余货
不同的商家的plc有不同的编程语言,但就某个商家而言,PLC的编程语言也就那么几种。下面,以西门子PLC的编程语言为例,说明一下,各种编程语言的异同。
不同的商家的plc有不同的编程语言,但就某个商家而言,PLC的编程语言也就那么几种。下面,以西门子PLC的编程语言为例,说明一下,各种编程语言的异同。
1、顺序功能图(SFC-Seauential Fuction Chart)
这是位于其它编程语言之上的图形语言,用来编程顺序控制的程序(如:机械手控制程序)。编写时,工艺过程被划分为若干个顺序出现的步,每步中包括控制输出的动作,从一步到另一步的转换由转换条件来控制,特别适合于生产制造过程。西门子STEP7中的该编程语言是S7 Graph。
2、梯形图(LAD-LAdder Diagram)
这是使用使用Z多的PLC编程语言。因与继电器电路很相似,具有直观易懂的特点,很容易被熟悉继电器控制的电气人员所掌握,特别适合于数字量逻辑控制。梯形图由触点、线圈和用方框表示的指令构成。触点代表逻辑输入条件,线圈 代表逻辑运算结果,常用来控制的指示灯,开关和内部的标志位等。指令框用来表示定时器、计数器或数学运算等附加指令。在程序中,Z左边是主信号流,信号流总是从左向右流动的。不适合于编写大型控制程序。
3、语句表(STL-STatement List)
是一种类似于微机汇编语言的一种文本编程语言,由多条语句组成一个程序段。语言表适合于经验丰富的程序员使用,可以实现某些梯形图不能实现的功能。
4、功能块图(FBD-Function Block Diagram)
功能块图使用类似于布尔代数的图形逻辑符号来表示控制逻辑,一些复杂的功能用指令框表示,适合于有数字电路基础的编程人员使用。功能块图用类似于与门、或门的框图来表示逻辑运算关系,方框的左侧为逻辑运算的输入变量,右侧为输出变量,输入、输出端的小圆圈表示“非”运算,方框用“导线”连在一起,信号自左向右。
5、结构化文本(ST-Structured Text)
结构化文本(ST)是为IEC61131-3标准创建的一种专用的高级编程语言。与梯形图相比,它实现复杂的数学运算,编写的程序非常简洁和紧凑。STEP7的S7 SCL结构化控制语言,编程结构和C语言和Pascal语言相似,特别适合于习惯于使用高级语言编程的人使用。
此次为大家带来的是关于一些PLC编程控制入门常用到的实例,以此为借鉴,让学PLC的进度条缩短,加大掌握程度。里面包含的知识点是较为齐全的,如:I/O分配表、PLC接线图、梯形图程序等。
一、电动机顺序启动、顺序停止控制(I/O分配表、PLC接线图、梯形图程序)
二、电动机的顺序启动、同时停止(I/O分配表、PLC接线图、梯形图程序)
三、电动机的顺序启动、逆序停止(I/O分配表、PLC接线图、梯形图程序)
四、电动机延时启动、停止控制(I/O分配表、PLC接线图、梯形图程序)
五、笼型感应电动机定子绕组从串电阻降压启动控制系统(I/O分配表、PLC接线图、梯形图程序)
六、三相绕线感应电动机转子绕组串电阻降压启动控制系统(I/O分配表、PLC接线图、梯形图程序)
七、Y-△降压启动控制系统(I/O分配表、PLC接线图、梯形图程序)
Y-△降压启动控制(1)
Y-△降压启动控制(2)
八、自耦变压器降压启动控制系统(I/O分配表、PLC接线图、梯形图程序)
嘉兴市高价回收西门子PLC工程余货
不同的商家的plc有不同的编程语言,但就某个商家而言,PLC的编程语言也就那么几种。下面,以西门子PLC的编程语言为例,说明一下,各种编程语言的异同。
冷却器让炎热的夏天不再难熬。但是,它们也可以使能源系统在全年的运作更加灵活。在可再生能源不断发展的今天,这一点尤为重要。西门子在柏林的专家团队正在研究如何优化全德科学ZX的冷负荷供应并探索冷却器与热存储系统相结合所能带来的可能性。
当夏天气温飙升时,我们常常会忘记虽然空调可以送来凉爽,但它也是个“耗能大户”。每年,空调都会消耗大量能源。国际能源署(IEA)Z近的一项研究表明,目前,空调耗能占世界能源总消耗的10%。据预测,到2050年,空调的数量将增加两倍。
这就是为什么对空调中冷却器的运行进行优化至关重要,尤其当我们所处的世界正越来越多地依赖可再生能源时,这一点的重要性则更上一层。具体来说,风能和太阳能是波动的,这意味着它们的产生并不规律。因此,我们的能源系统要变得更加灵活,而这正是电动冷却器可以发挥作用的地方——如果能将它们与热能储存系统相结合的话。
目前,柏林的Adlershof科技园内安装了六套制冷系统。它们平时间歇式制冷,利用率仅为10%左右。由Stefan Langemeyer领导的西门子专家团队希望能够优化冷却网的运行。
柏林Adlershof科技园项目
自2018年春季以来,来自西门子ZY研究院的研究团队就在开展相关研究。在一项德国联邦经济事务与技术部的研究项目中,他们与来自柏林工业大学、亚琛工业大学与柏林祖斯研究所的合作伙伴携手,共同优化柏林Adlershof科技园内的制冷系统。柏林Adlershof科技园是德国的科学ZX。该项目是“柏林Adlershof 能源战略2020”举措的一部分。这个举措旨在到2020年时将该基地的基本能源需求减少30%。
项目的优化对象是园区内6台冷却器和一个热能存储系统(又叫“冰储存系统”)。它们为占地近两万平方米的办公室和实验室提供所需冷能。这些冷能主要有三个用途:调节室内空气、冷却机器和用于过程冷却,如用于在园区内制造半导体等。
可靠、低碳且性价比高
“此前,科技园内冷却器的运行效率很低。”西门子ZY研究院项目经理Stefan Langemeyer表示。目前园区内的6个系统每个输出功率都在600千瓦到800千瓦之间。通常,它们会根据园区对冷负荷的需求运行。这也是为什么冷却器经常在一个效率较低的低负荷范围内工作的原因。“我们正在开发一套全自动能源管理系统来更GX地控制冷却器。”Langemeyer解释道。项目的目标是以一种可靠的方式来以的成本和Z少的碳足迹提供必要的冷能。
优化制冷系统的运行将有可能大大节约成本并提高园区的生态友好水平。
“在能源管理系统方面,我们必须考虑到机器与机器,以及机器与环境间复杂的依赖性和相互作用。”Langemeyer表示。在理想状态下,冷却器的运行取决于室外温度:温度越低,对能源的需求就越低。当然,如果机器能在能源价格较低时运行会更好。这就是为什么专家团队在研发能源管理系统时考量了一天及一年中Z适合产生冷能的时机并将它与科技园的具体需求进行了结合。