Ruzet铅酸蓄电池12LPA230发电专用电池


路盛蓄电池产品特性:
1.安全性能好:正常使用下无电解液漏出,无电池膨胀及破裂。
2.放电性能好:放电电压平稳,放电平台平缓。
3.耐震动性好:完全充电状态的电池完全固定,以4mm的振幅,16.7HZ的频率震动1小时,无漏液,无电池膨胀及破裂,开路电压 正常。
4.耐冲击性好:完全充电状态的电池从20CM高处自然落至1CM厚的硬木板上3次无漏液,无电池膨胀及破裂,开路电压正常。
5.耐过放电性好:25摄氏度,完全充电状态的电池进行定电阻放电3星期(电阻只相当于该电池1CA放电要求的电阻),恢复容 量在75%以上。
6、耐充电性好:25摄氏度,完全充电状态的电池0.1CA充电48小时,无漏液,无电池膨胀及破裂,开路电压正常,容量维持率在上 95%以。
7、耐大电流性好:完全充电状态的电池2CA放电5分钟或10CA放电5秒钟。无导电部分熔断,无外观变形
蓄电池应用领域与分类:
◆ 免维护无须补液; ● UPS不间断电源;
◆ 内阻小,大电流放电性能好; ● 消防备用电源;
◆ 适应温度广; ● 安全防护报警系统;
◆ 自放电小; ● 应急照明系统;
◆ 使用寿命长; ● 电力,邮电通信系统;
◆ 荷电出厂,使用方便; ● 电子仪器仪表;
◆ 安全防爆; ● 电动工具,电动玩具;
◆ 独特配方,深放电恢复性能好; ● 便携式电子设备;
◆ 无游离电解液,侧倒仍能使用; ● 摄影器材;
(1)蓄电池的核对性放电试验
蓄电池端电压的测量不能只在浮充状态,还应在放电状态下进行。端电压是反映这种电池工作状况好坏的一个重要参数。浮充状态下进行电池端电压测量,由于外加电压的存在,测量出的电池端电压易造成假象。即使有些电池反极或断路也能测量出正常数值,实际上是外加电压在该蓄电池两端造成的电压差。当市电停电时,蓄电池若有容量有问题则放电时间很短,若电池开路停电时通信设备直接掉电,造成通信阻断故障。所以每年定期对电池进行一次带载核对性放电试验,让蓄电池内部有效物质充分的进行一次活化,以防止蓄电池内部硫酸铅形成钝化。根据环境温度和负载电流的大小,计算出蓄电池的实际容量,放出蓄电池实际容量的30%~40%,并利用电池监控系统对蓄电池组进行检测截图打印存档,同时检查蓄电池连接条接触情况,对蓄电池连接条有松动的进行紧固,确保蓄电池组安全稳定地运行。
Ruzet铅酸蓄电池12LPA230发电专用电池
(2)蓄电池的容量放电试验
目前各通信电源直流供电系统中,开关电源与蓄电池为并联浮充供电,蓄电池组无法脱离供电系统,无法单组做蓄电池容量试验。
根据维护规程每三年对蓄电池组进行容量试验,蓄电池使用6年后每年进行容量试验一次,电池组放出容量的80%以上合格。
①种方法:将直流供电系统中的一组电池组脱离系统,接上智能假负载,调整负载大小使放电电流保持在某值(一般0.1C10放电率),当电池组中某一单体电池的端电压Z到达放电终止电压时,放电测试结束。根据电池组的放电时间和放电电流来计算其容量,然后用备用的开关电源设备对放电后的电池组按0.1C10的充电率进行充电,充电结束后并入直流供电系统。电池组离线式容量试验,测试数据准确,电池组实际容量计算方便,便于了解电池组实际容量。但当该供电系统只剩下一组电池后备,系统备用电池供电时间明显缩短,且不清楚在线电池组是否存在质量问题;尤其使用六年以上的电池组,一旦市电中断,该电池组对通信设备放电保障风险系数增大。所以用此种方法对电池组进行容量试验时,要求油机发电机组必须处于工况状态下,以确保发电机组、开关电源等设备正常运行。
放电结束后的电池组充满电后再并入供电系统,此时与在线电池组间存在电压差,若操作不当将引起开关电源对并入的电池组进行大电流充电,产生火花,易发生安全事故。为了解决打火花问题,必须调整开关电源输出电压,然后与充满电的电池组电压相等后进行并联浮充。
该放电方式操作难度偏大,既要脱离电池组的正极电源线,又要脱离电池组的负极保险,尤其是脱离电池组负极保险时需要特别小心并做好绝缘处理,操作不当引起负极短路,将造成系统供电中断和人身安全事故的发生。同时放电电池组通过假负载以热量形式消耗,浪费电能,增大了机房空调的制冷时间,影响机房设备运行环境,需要维护人员时刻守护,以免假负载高温引发通信供电设备故障
【注意事项】
● 根据用途或设计要求正确选择电池的型号、规格和安装方式;
● 不同容量、不同厂家、不同性能、不同型号的蓄电池不能混合使用;
● 蓄电池充电方式以恒压限流为宜。25℃环境温度条件下:浮充使用时,充电电压为2.25-2.30V/单格,电流不限;循环使用时,充电电压为2.40-2.50V/单格;均充电压为2.35-2.40V/单格,电流为0.3C10A(C为10小时率放电额定容量);
● 使用蓄电池时,根据使用的环境变化,充电电压应相应调整,浮充使用时温度补偿系数为-3mV/(℃·单格),即环境温度每升高1℃,充电电压降低3mV/单格;反之,环境温度每降低1℃,充电电压升高3mV/单格;循环使用时为-5mV/(℃·单格);均充时为:-4mV/(℃·单格);