品牌
自营品牌
检测项目
颗粒物、SO2、NOx、O2、温压流、湿度
响应时间
0秒
示值误差
±0.1%
稳定性
国标
重复性
国标
价格区间
1万-5万
产地类别
国产
应用领域
环保/水工业,石油/化工,钢铁/金属,制药/化妆品,涂料
一、产品概述
烟气连续在线监测系统运用抽取冷凝采样、后散射烟尘浓度测量、皮托管烟气流速测量及计算机网络通讯技术,实现了固定污染源污染物排放浓度和排放总量的在线连续监测。同时又针对国内煤种较杂、煤质变化大、污染物排放浓度高、烟气湿度大的状况从技术上进行了改进。并按照国家标准设计定型,提供专业的中文操作平台及中文报表功能、多组模拟量及开关量输入输出接口,可实现现场总线的连接以及多种通讯方法的选用,使系统运行方便灵活。
烟气连续在线监测系统(CEMS)是功能齐全,整体水平固定污染源在线监测系统。主要由以下几个子系统组成:
1、固态颗粒物连续监测子系统,采用激光后散射单点监测。
2、气态污染物连续监测子系统多组分气体分析仪(SO2、NOX、CO、CO2、HCL、HF、NH3)
3、烟气含氧量、烟气流量、压力、温度,湿度等烟气参数连续监测子系统
4、数据处理与远程通讯系统CEMS厂家烟气连续排放检测系统环保
二、技术说明
◢ 抽取冷凝法CEMS能够测量SO2、NOx、O2、温度、压力、流速、粉尘、湿度;
◢ SO2、NOx采用紫外差分吸收光谱(DOAS)分析技术或红外线NDIR分析技术;
◢ O2采用电化学氧电池;CEMS厂家烟气连续排放检测系统环保
◢ 温度、压力、流速分别采用热敏电阻(PT100)、压力传感器和皮托管微压差法;
◢ 粉尘采用激光后散射法;
◢ 紫外差分吸收光谱(DOAS)分析技术除了能够测量SO2和NOx外,还能够分析NH3、Cl2、H2S、O3等气体;
◢ 与抽取热湿法CEMS相比,本系统具有结构简单、可靠性高、响应速度快、维护方便等优点;
◢ 与原位法相比,分析仪具有支持在线校准、测量值波动小、可靠性高、设备维护简单等优点;
◢ 本分析仪整机结构紧凑,方便运输和安装。
◢ 系统运行数据采集率≥90%,系统提供的检测数据资料可用率≥90%,并具有查阅历史数据功能。
◢ 输出单位:对所检测烟气的各种参数,系统除在就地分析仪器面板上显示外还均以4~20mA标准模拟量信号输出。气态污染物浓度单位使用mg/Nm3,流量计测出流速信号应折算成体积流量Nm3/s输出,温度单位为℃。
◢ 系统能够真正实现无人职守运行,系统具有自诊断功能及主要部件故障报警功能,包括:测量元件/检测探头的失效、超出量程、采样流量不足、反吹压力低、采样头温度低、采样管线温度低、预处理系统故障、分析仪器故障等。
1氨氮比、温度、CNO,i、表观速度
种气氛下氨氮比、反应温度、入口NO质量浓度CNO和表观速度对SCR烟气脱硝效率的影响。
氨氮比和SCR烟气脱硝效率均呈正相关。这是因为氨氮比增加时相当于氨的质量浓度增加,根据反应速率方程:r=kAaBb了,氨的质量浓度增加将导致反应速率增加,在表观速度不变情况下,反应更彻底,脱硝效率就越高。但随着氨氮比的继续增加,脱硝效率增加的幅度逐渐减小,这是由于氨的质量浓度过高使NH3分子不能吸附在催化剂上与NO发生反应而直接逸出。
在290℃~380℃内,SCR烟气脱硝效率均随着温度的升高而增大,这是由于温度升高,结合公式(1)定性分析,可知反应速率常数增加,脱硝效率是增加的;另一方面,根据打一散系数计算公式(具体公式参见文献公式(3),当反应温度增加时,烟气中NO和NH3的打一散系数也增加,使催化剂上吸附更多的NO和NH3,促进氨氮反应的进行。但脱硝效率的增长速率减小,这是由于在高温区域,氨发生氧化反应,使参与脱硝反应的氨量减少;同时高温下SO2具有较高的转化率,会在催化剂活性位上产生竞争吸附,且温度越高,吸附作用越强。
种气氛下,CNO由240 mg/m3增加到340 mg/m3,SCR脱硝效率都仅变化了1%左右,可以看出CNO变化对脱硝效率影响较小。根据公式分析可知,入口NO初始质量浓度NO的增大,其脱硝效率会相应增加;另一方面由于实验室模拟的烟气成分相对纯净,烟气流经催化剂表面时扰动不强,造成不能在催化剂上与NH3发生反应而直接逸出,表现为催化剂对NO的质量浓度适应性不足,使得脱硝效率降低。
模拟O2/CO2烟气下,当表观速度由16 m/s增加到22 m/s时,SCR脱硝效率下降了约8%,可以看出,脱硝效率随着表观速度的增加而降低,影响比较明显,这是因为表观速度越大,烟气在催化剂内停留时间越短,氨氮催化反应作用时间越短,则脱硝效率越低。但随着表观速度进一步增大,其脱硝效率下降趋势却是减小的,这主要是由于表观速度越高,烟气与催化剂接触时间就越短,且由于气体扩散系数存在差别,导致扰流增强,增大了NO分子与催化剂表面的接触机会,从而促进了脱硝反应的进行,这在一定程度上减缓了随着表观速度增加其脱硝效率降低的速度.
3.2烟气中H2O和O2体积分数
模拟O2/CO2和空气两种气氛下烟气中H2O和O2对SCR脱硝效率的影响情况。
随着烟气中的H2O从5%上升到15%,在不同燃烧气氛下,SCR烟气脱硝效率均随着水分的增加而减小,且减小幅度越来越大,这是由于烟气中水在活性位上与氨发生竟争吸附,且H2O的含量越多,竟争吸附作用越强,从而YZ了NH3的吸附,降低了脱硝效率。但当水的体积分数由15%调整到5%,此时SCR烟气脱硝效率也基本恢复到初始水平,说明H2O对脱硝反应的YZ作用是暂时的,可恢复的,这是因为NH3的吸附为物理吸附。
当烟气中O2的体积分数从2%上升到8%,在不同燃烧气氛下,SCR烟气脱硝效率均随着O2体积分数的增加而升高,这是因为O2能够通过打一散到达催化剂表面,并吸附在催化剂内孔道中参与反应,氧气的体积分数越高越有利于氨氮脱硝反应。研究表明NO在催化剂上的活性中间体是由O2解离吸附产生的O,吸附态O越多,NO转化率越高。但随着O2体积分数继续增加,脱硝效率增加的幅度不断减小。这是因为当氧气体积分数增加到一定程度时,催化剂表面吸附饱和,NO转化率变缓慢。但当O2的体积分数由8%调整到2%,其脱硝效率恢复到初始水平,说明氧气的体积分数对脱硝效率与催化剂活性的提升不是性的,这是由于氧气体积分数的降低导致氧气解离吸附产生的O的减少。
不同气氛下氨氮比、温度、CNO,i,表观速度以及烟气中的H2O和O2对SCR烟气脱硝效率的变化规律基本一致,说明CO2对脱硝性能作用与上述因素无关。在相同实验工况下,与空气气氛相比,O2/CO2气氛下SCR烟气脱硝效率降低了7%一8%,这主要是因为CO2使NH3与NO的打一散能力减弱,从而YZ了SCR烟气脱硝性能.
随着燃气轮机的快速发展及其装机总量的不断提升,燃气轮机NOx排放控制技术受到越来越广泛的关注。汇总分析了国内外NOx排放标准以及主要的NOx控制技术。选择性催化还原(SCR)技术是应用Z广泛的尾部烟气脱硝技术,但因燃气轮机的烟气NOx含量低且氧含量高,余热锅炉空间结构狭窄等特点,传统SCR催化剂难以直接应用。详细介绍了燃气机组SCR脱硝催化剂应用现状和国内外相关研究进展,研究发现低温活性和抗水性是燃机脱硝催化剂的重要研究方向。