BJSTK/FM100-12京科蓄电池12V100AH输变电站
BJSTK/FM100-12京科蓄电池12V100AH输变电站
电压:单相交流额定电压有效值220V±20%
频率:频率范围 45-65Hz
电流:在满载运行时,输入220V,小于8A。在264V时,冲击电流不大于18A
效率:负载由50%-100%为表2.1值
功率因数:大于0.90,负载在50%以上,大于0.95
谐波失真:符合IEC 555-2要求
启动延迟:在接通电源3秒内输出达到它的额定电平
保持时间:输入176V有效值,满载,大于10mS
太阳能蓄电池光伏发电系统的基本原理相同,因而太阳能路灯的设计思路也可依据一般的太阳能发电系统,先确定光源的功率,每天的工作时间,保证几个阴雨天然后计算蓄电池的容量和太阳能蓄电池组件的功率。但太阳能路灯又有其特殊性,需要确保系统工作的稳定与可靠,所以在设计时需要特别注意。 太阳能路灯利用太阳能蓄电池的光生伏应原理,白天太阳电池吸收太阳能光子能量产生电能,通过控制器储存在蓄电池里,当夜幕降临或灯具周围光照度较低时,蓄电池通过控制器向光源供电一直到设定的时间后切断。
电压:在满载时,输出电压设定在表1值的±0.2%
电流:负载电流从零到值(参看表1),过流保护开始是恒流,当电压降低到一定值得时,电流截止.
稳压特性:负载变化由零变到100%, 输入电压由176V变到264VZ坏情况下输出电压变化不超过200mV.
瞬态响应: 在没有电池连接到输出端时,负载由10%变化到100%,或由满载变化的10%,恢复时间应当在2mS之内.输出电压偏摆应当小于1V.
静态漏电流:当模块关断时,反向泄漏电流小于5mA.
温度系数:模块在整个工作温度范围内≤±0.015%.
温升漂移:在起初30秒内,±0.1%
输出噪音:输出噪音满足通信电源标准,衡重杂音<2mV.
铅酸蓄电池修复完成后,用吸管接上透明聚乙烯管伸入铅酸蓄电池单格内部,吸干净每个单格内流动的电解液。然后把铅酸蓄电池表面擦拭干净,盖好安全阀,恢复玻璃丝棉填充物,再用ABS胶或502胶黏结好铅酸蓄电池。注意胶水不能太多,以防堵塞排气通道。待胶水凝固后,即可重新配组装车使用。铅酸蓄电池维修后没有达到标称容量70%以上的原因有:
随着放电时间的增加,蓄电池的电压开始下降这样就引起了电流的下降,要想保证电流恒定,必须调整负载。
因此,结合主控对象为变换器输入电流的特点,采用如下图基于BUCK变换器结构的主回路。在电路中因电阻端无需稳压,去掉了BUCK变换器电阻端的电容,而将电容C放到了前级。
在这里L0和D起到续流和保护开关管的作用,C在开关闭合时工作在放电方式,在开关断开时工作在充电方式,同时C和L。结合使电池电流稳定。
该电路拓扑有其独到之处,可保证电池放电过程平缓受控放电电流恒定。
由于采用高频斩波降压,电池泻放能量92%以上由外挂固定电阻板转换成热能,故降压回路与监控回路可集成一体化,增加装置的可靠性,且便于携带。
充电30min后,测试铅酸蓄电池的电压,若还低于12V(额定电压为12V的铅酸蓄电池),则可判定为铅酸蓄电池内部断路。这样的铅酸蓄电池基本上无法修复,只能报废。
型号 | 额定电压 (V) | 标称容量 (Ah) | 额定容量(Ah) | 外型尺寸(mm) | 重量 (kg) |
| | | 20HR | 长 | 宽 | 高 | 总高 | |
FM12V—7 | 12 | 7 | 7 | 152 | 66 | 95 | 100 | 2.5 |
FM12V—12 | 12 | 12 | 12 | 152 | 99 | 96 | 100 | 4.0 |
FM12V—17 | 12 | 17 | 17 | 181 | 77 | 167 | 167 | 6.0 |
FM12V—24 | 12 | 24 | 24 | 166 | 125 | 175 | 175 | 9.0 |
FM12V—38 | 12 | 38 | 38 | 197 | 166 | 171 | 171 | 13.5 |
FM12V—65 | 12 | 65 | 68 | 350 | 166 | 174 | 174 | 20 |
FM12V—100 | 12 | 100 | 105 | 405 | 174 | 216 | 248 | 31 |
FM12V—100B | 12 | 100 | 100 | 328 | 170 | 217 | 221 | 31 |
FM12V—150 | 12 | 150 | 150 | 483 | 173 | 242 | 242 | 50 |
FM12V—200 | 12 | 200 | 200 | 520 | 240 | 220 | 248 | 65 |
Lp、Ln为正负极电感;Rt.p和Rt.n是电极离子迁移电阻;Cdl.p、Cdl.n是极板双电层电容;Zw.p、Zw.n为Warburg阻抗,是由离子在电解液和多孔电极中扩散速度决定的;RHF是前面提到的欧姆电阻。
研究中将Warburg阻抗表示为一个电阻和电容串联组成的阻抗ZW。
式中λ——Warburg系数,表示反应物和生成物的扩散传质特性;ω——角频率
内阻的影响因数
•电池老化程度
随着电池老化,蓄电池内阻增加。比如随栅板和汇流排的腐蚀,金属导电回路变化,使电池内阻增大。
•环境温度
当温度升高时,电解液的活度加强,内阻降低;当温度降低时,电解液活度减小,内阻增加。大量实验数据表明,当温度低于20℃时,电池内阻随温度的变化明显,当温度高于20℃时,电池内阻随温度变化较为平缓。
•电池荷电状态
电池处于不同充电状态时其内阻不同,满充电时内阻Z小。随着放电进行电池内阻逐渐增加。而随充电的进行内阻逐渐减小。
•浮充电压
不同的浮充电压对电池产生的影响不一样,比如发热,极板腐蚀,氧复合,电化学极化程度等,因此对内阻也会产生不同的影响。
电池阻抗是一个复阻抗,在其它条件不变的情况下,与测试频率有关。
通常情况的内阻是指某一固定频率下的内阻值,对于一般的VRLA蓄电池,多数采用低于100Hz的频率,在实际使用中常把复阻抗的模称为内阻。
备用场合使用的VRLA电池一般容量很大,在几十Ah到数千Ah,电池的内阻值很小。由于阻值低,电池正负极输出感应的电压幅值很小,要准确测量内阻有一定难度,尤其是在线测量时电池端存在充电纹波和负载变动时的动态变化。常见的内阻测试方法简述于下。